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Abstract

Superdeduction is a formalism closely related to deduc-
tion modulo which permits to enrich a first-order deduction
system—such as natural deduction or sequent calculus—
with new inference rules automatically computed from the
presentation of a theory. We give a natural encoding from
every Pure Type System (PTS) into superdeduction by defin-
ing an appropriate first-order theory. We prove that this
translation is correct and conservative, showing a corre-
spondence between valid typing judgment in the PTS and
provable sequents in the corresponding superdeductive sys-
tem. As a byproduct, we also introduce the superdeduc-
tive sequent calculus for intuitionistic logic, which was un-
til now only defined for classical logic. We show its equiv-
alence with the superdeductive natural deduction. This im-
plies that superdeduction can be easily used as a logical
framework. These results lead to a better understanding of
the implementation and the automation of proof search for
PTS, as well as to more cooperation between proof assis-
tants.

1. Introduction

According to Pfenning [24], a logical framework is a
meta-language for the specification of deductive systems.
The most famous one is the Edinburgh Logical Framework
introduced in [21], which is based on a λ-calculus with de-
pendent types which is known as λP or λΠ. Many sys-
tems, such as first-order natural deduction, simply typed λ-
calculus, sundry presentations of modal logics, etc. can be
represented in it.

Most existing interactive theorem provers are based on
the logical framework approach, either explicitly as in Is-
abelle (http://isabelle.in.tum.de/) or implicitly in
proof assistants based on extensions of λΠ, such as Coq
(http://coq.inria.fr/). These extensions are instances
of what are called Pure Type Systems (PTS), which are
generic typing systems for λ-calculi with dependent types.

Superdeduction [27, 8] consists quite in the inverse ap-

proach to logical frameworks: from the presentation of
a theory is computed a deductive system which is well
adapted to proof representation and search in this theory.
For instance, from the intuitive definition of the inclusion
A⊆ B≡ (∀x. x ∈ A⇒ x ∈ B) are computed the two rules

Γ,x ∈ A ` x ∈ B
⊆df

I
x not
free in ΓΓ ` A⊆ B

Γ ` A⊆ B Γ ` t ∈ A⊆df
E Γ ` t ∈ B

in supernatural deduction, the superdeductive system based
on natural deduction.

Although superdeduction originally comes from typed
ρ-calculus [10], it shares many aspects with deduction mod-
ulo [15]. Deduction modulo was at first thought of as a
way to make computation and deduction easily cooperate in
proofs. This is done by modeling the computations through
a congruence between propositions, and by applying the in-
ference rules of the deductive system we are considering
modulo this congruence. For the instance of the inclusion
above, this means that the following derivation is valid in
natural deduction modulo:

Γ ` x ∈ A⇒ x ∈ B∀I
x not free in Γ

A⊆ B≡ (∀x. x ∈ A⇒ x ∈ B)Γ ` A⊆ B

We can remark that above this derivation it is quite natural
to apply ⇒I . This explains why the new rule ⊆df

I , where
this step is precomputed, is more adapted to build proofs in
the theory.

Notwithstanding, superdeduction and deduction modulo
can be seen as a logical framework. In particular, HOL was
presented in deduction modulo [14], and this is also possi-
ble in superdeduction, leading to new inference rules which
correspond exactly to the ones of HOL-λ. This presenta-
tion is not only interesting for practical reasons, leading to
automated theorem proving procedures based on deduction
modulo, such as ENAR [15] or TaMed [6], and well adapted
for HOL. It also permits to get a first-order characterization
of HOL. Indeed, proving in the sequent calculus modulo,
or in supernatural deduction, is equivalent to proving in the
pure sequent calculus within a so called compatible (first-
order) theory (see [15, Proposition 1.8]).

An important issue in interactive theorem proving is the
abundance of proof assistants. Ideally, we would like to
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be able to use theories developed in a particular theorem
prover into another one, and thus to have translations be-
tween all the proof systems corresponding to the provers.
Another approach was proposed by Kirchner through Fel-
lowship [25]. This tool permits to translate proofs in the
first-order sequent calculus into proofs in PVS (http://
pws.csl.sri.com/), Coq (http://coq.inria.fr/) and
soon other provers. Recently, another step was performed
by Cousineau and Dowek [11] who proved that every Pure
Type System can be encoded in λΠ modulo. Inversely to
Fellowship, this permits to translate proofs of the theorem
provers into proofs of λΠ modulo, and the tool Europa,
which checks proofs in λΠ modulo, can then be used. The
question that naturally arises is why this encoding is not
performed in a first-order system (i.e. without β-conversion,
which is a higher-order mechanism) such as for instance the
sequent calculus modulo, as was done for HOL.

This paper shows how it is possible. Then, using the
equivalence between proving in deduction modulo (or in
superdeduction) and proving using a compatible theory, this
will give us proofs in the first-order sequent calculus (with-
out modulo), which can be fed to Fellowship. Furthermore,
this leads to the automation of proof search in PTS, ei-
ther through automated provers based on deduction mod-
ulo (TaMed and ENAR), or, using the equivalence, through
standard automated provers.

To encode the PTS, we define a first-order theory which
produces, in supernatural deduction, new inference rules
that are close to the typing rules of the PTS. In particular,
in a PTS, there is a conversion rule that says that two β-
convertible terms type the same terms. To simulate this in a
first-order setting, we will use some λ-calculus with explicit
substitutions, such as for instance λσ [1]. As we want our
work to be independent of a particular calculus, we use a
scheme of calculi, quite the same as Kesner [22] (who used
it to get a generic proof of confluence of such calculi). We
then prove that our translation is correct—valid typing judg-
ments of the PTS can be translated into provable sequents
in supernatural deduction—and conservative—provable se-
quents in supernatural deduction corresponds (modulo β-
reduction) to valid typing judgments.

To prove the conservativeness, we need the fact that the
newly created rules are enough to prove everything related
to the first-order theory. To prove this, we define correspon-
dences between supernatural deduction and the superdeduc-
tive system for the intuitionistic sequent calculus. Being
until now only introduced for classical logic [8], we need
to define the so-called intuitionistic super sequent calculus
here. Because we need as few permutation problems as pos-
sible, we do not base it on Gentzen sequent calculus LJ, but
on the sequent calculus LB [26]. In addition to a better com-
prehension of the properties of the supernatural deduction
as a logical framework, this also leads to the actual use of

Lemuridæ Intuitionistic Super Sequent Calculus

This paper

Europa

Coq CiC · · ·

[11]

λΠ-calculus modulo

[27]
+

[18]

PVS HOL

This paper

Fellowship

[25]

Supernatural deduction

FO sequent calculus

Figure 1. Complementarity of our work with
existing systems

its super sequent calculus counterpart in the theorem prover
based on superdeduction, Lemuridæ [8], in a proven sound
and correct way.

The contributions of this paper are summed up in fig-
ure 1. We show that every PTS can be encoded in a natu-
ral way in supernatural deduction through the definition of
a first-order theory. We prove that this translation is cor-
rect and conservative. This shows that superdeduction is
expressive enough to encode elaborated deductive systems,
and can therefore be considered as a powerful logical frame-
work. We also prove an equivalence between supernatural
deduction and super sequent calculus, and this implies that
the newly computed rules are enough to prove results re-
lated to the theory, i.e. we do not need logical rules.

The next section presents the notions necessary to the
remaining of the paper, i.e. LB, PTS, and the scheme of cal-
culi with explicit substitutions. Section 3 introduces the two
systems of superdeduction, i.e. supernatural deduction and
super sequent calculus. The translation between is given,
as well as a theorem (Corollary 7) stating that the new in-
ference rules are enough to prove results related only to the
theory used to compute the rules, for a large class of theo-
ries. Section 4 defines the first-order theory used to encode
a PTS, and presents the supernatural deduction rules com-
puted from it. Their soundness and conservativeness is then
proved. Finally, Section 5 presents some results follow-
ing from this encoding. The appendix contains postponed
proofs.
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2. Prerequisites

The reader is assumed to be familiar with the natu-
ral deduction NJ and the sequent calculi LJ and LK of
Gentzen [18], and to have basic notions on rewriting, as can
be found in [3], which notations we will use. We restrict
ourselves to intuitionistic first-order logic with only ⇒, ∧
as connectors and ∀ as quantifier. This is enough for the
remaining of the paper, but this could be generalized to full
intuitionistic first-order logic. {A/x}B denotes the result of
substituting all occurrences of x by A in B.

2.1. Intuitionistic sequent calculus

The standard sequent calculus for first-order intuition-
istic logic is the one introduced by Gentzen [18]. It is the
sequent calculus for first-order classical logic restricted
to sequents with at most one formula in the right part.
Unfortunately, this calculus permits too few permutations
between inference rules, and therefore the super sequent
calculus based on it would be incomplete even for simple
theories. We will therefore use another sequent calculus,
LB [26], which is based on a tableau method for intuitionis-
tic logic and allows more permutations. The inference rules
for LB are the following:

Axiom
Γ,A ` A,∆

Γ,A ` ∆ Γ ` A,∆
Cut

Γ ` ∆

Γ,A,B ` ∆∧L
Γ,A∧B ` ∆

Γ ` A,∆ Γ ` B,∆∧R
Γ ` A∧B,∆

Γ,B ` ∆ Γ ` A,∆⇒L
Γ,A⇒ B ` ∆

Γ,A ` B⇒R
Γ ` A⇒ B,∆

Γ,{t/x}A ` ∆
∀L

Γ,∀x. A ` ∆

Γ ` A∀R x not free in Γ
Γ ` ∀x. A,∆

Note how, on ⇒R and ∀R, ∆ is discarded in the above
sequent. This is why this sequent calculus corresponds to
intuitionistic logic. Axiom and Cut are called identity rules,
the others logical rules.

2.2. Pure Type Systems

PTS are typing systems for the λ-calculus with depen-
dent type. In particular, the simply-typed λ-calculus, λΠ,
and the calculus of constructions (in fact, the whole λ-cube),
λHOL, etc. can be considered as PTS. We refer to [4].

Definition 1 (Pure Type Systems). A PTS is defined by
three data: a set S of sorts, a relation A ⊆ S × S of ax-
ioms, and a relation R ⊆ S ×S ×S of rules.

Pseudo-terms are defined using this grammar (s ∈ S ):

T def= x | s | Πx : T T | λx : T T | (T T ) .

The typing rules are represented in figure 2. A term of
the PTS is a pseudo-term which can be typed.

Any PTS has the following properties:

Lemma 1. Subject reduction [4, Theorem 5.2.15]
If Γ P̀TS A : B and A ∗−→βA′ then Γ P̀TS A′ : B.

Subject reduction for η [19, Proposition 2.6]
If Γ P̀TS λx : A (T x) : B then Γ P̀TS T : B.

Correctness of types [4, Corollary 5.2.14] If Γ P̀TS A : B
then there exist some s ∈ S such that either B = s or
Γ P̀TS B : s.

Substitution [4, Lemma 5.2.11] If Γ[x : B] P̀TS α and
Γ P̀TS A : B then Γ P̀TS{A/x}α.

Definition 2. A PTS is functional if (〈s1,s〉 ∈ A and
〈s1,s′〉 ∈ A) or (〈s1,s2,s〉 ∈ R and 〈s1,s2,s′〉 ∈ R ) implies
s = s′.

Lemma 2 (Uniqueness [4, Lemma 5.2.21]). If a PTS is
functional, Γ P̀TS A : B and Γ P̀TS A : B′ implies B ∗←→βB′.

In the following, we will only consider functional PTS.

2.3. A scheme for λ-calculi with explicit substitu-
tions

Because we do not want that our work depends on a par-
ticular calculus with explicit substitution, we use a scheme,
as is done in [22]. Our scheme is slightly different, because
we use named variables and precooking [13], so that the
λ-term λx (y x) is translated into λ(y [shift] 1) instead of for
instance λ(2 1) using only De Bruijn indices. A pure term is
therefore a term were free variables are correctly precooked.
However, the results are the same in the two settings, pro-
vided we add conditions 10 and 11 in Definition 4.

Definition 3 (Substitution calculus). A substitution calculus
consists of a signature upon two sorts T and S which con-
tains a constant shift : S, three function symbols λ : T ↪→T,
· · : T×T ↪→ T and · [·] : T×S ↪→ T, and in which can be
defined two functions lift : S ↪→S and cons : T ↪→S; and
a sort-preserving rewrite system containing

(ab) [s]→ a [s] b [s] (App)

and
(λa) [s]→ λ(a [lift(s)]) (Lambda)

We also need the rule which triggers the β-reduction:

(λa)b→ a [cons(b)] (Beta)

It is not part of the rewrite system W of the substitution
calculus. We denote by λW the system W +(Beta).

Definition 4 (Scheme). A substitution calculus W obeys the
scheme if
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Empty
[] well-formed

Γ P̀TS A : s1 Γ[x : A] P̀TS B : s2
Product 〈s1,s2,s3〉 ∈ R

Γ P̀TS Πx : A B : s3

Γ P̀TS A : s
Declaration s ∈ S and x not in Γ

Γ[x : A] well-formed

Γ P̀TS T : Πx : A B Γ P̀TSU : A
Application

Γ P̀TS(T U) : {U/x}B

Γ well-formedSort 〈s1,s2〉 ∈ A
Γ P̀TS s1 : s2

Γ P̀TS Πx : A B : s Γ[x : A] P̀TS T : B
Abstraction

Γ P̀TS λx : A T : Πx : A B

Γ well-formed x : A ∈ Γ
Variable

Γ P̀TS x : A
Γ P̀TS T : A Γ P̀TS B : s

Conversion s ∈ S and A ∗←→βB
Γ P̀TS T : B

Figure 2. Typing rules of a PTS 〈S ,A ,R 〉

1. W is confluent
2. W is strongly normalizing
3. W-normal forms of terms are pure terms
4. W (ab) =W (a)W (b) and W (λa) = λW (a), where W (a)

denotes the W-normal form of a
5. for every substitution s : S in W, 1 [lift(s)] ∗←→W 1
6. for every substitution s : S in W and m ≥ 1,

m+1 [lift(s)] ∗←→W m [s] [shift]
7. for every term k : T and m≥ 1, m+1 [cons(k)] ∗←→W m
8. for every term k : T, 1 [cons(k)] ∗←→W k
9. for every m, m [shift] ∗←→W m+1
10. for every named variable x, substitution s : S, and

n≥ 0, x [shift]n+1 [lift(s)] ∗←→W x [shift]n [s] [shift]
11. for every named variable x, term k : T, and n ≥ 0,

x [shift]n+1 [cons(k)] ∗←→W x [shift]n

12. for every function symbol ξ : K1×·· ·×Kq → S and
m≥ 1, one of the two following conditions holds:
• there exists some n, distinct indices

i1, . . . , ip in {1; · · · ;q} and substitutions
u1, . . . ,uk such that for all s1, . . . ,sq we have
m [ξ(q1, . . . ,qns)] ∗←→W n [si1 ] . . .

[
sip

]
[u1] . . . [uk];

• there exists i ∈ {1; · · · ;q} such that for all
s1, . . . ,sq we have m [ξ(q1, . . . ,qns)] ∗←→W si.

In particular, these conditions implies that λW is conflu-
ent [22, Theorem 5.18]. Many calculi with explicit substi-
tution are instances of this scheme, in particular λσ [1] (see
[22] for others).

Note that we do not use the same parenthesis conventions
for PTS terms and (first-order) terms of the scheme, in order
to make a visual distinction between them.

3. Superdeductive systems for intuitionistic
logic

3.1. Supernatural deduction

Supernatural deduction LJ+ was introduced by Wack
[27] as a complement to deduction modulo [15]. It con-

Introduction rules: Elimination rules:

Γ ` A
Γ ` A∗

Γ ` A∗

Γ ` A

Γ ` >∗
Γ ` >∗
Γ ` >

Γ,P ` Q∗

Γ ` (P⇒ Q)∗
Γ ` (P⇒ Q)∗ Γ ` P

Γ ` Q∗

Γ ` P∗ Γ ` Q∗

Γ ` (P∧Q)∗
Γ ` (P∧Q)∗

Γ ` P∗
Γ ` (P∧Q)∗

Γ ` Q∗

Γ ` P∗
x not free in Γ

Γ ` (∀x. P)∗
Γ ` (∀x. P)∗

Γ ` ({t/x}P)∗

Figure 3. Rules for computing super introduc-
tion and elimination rules

sists in computing new inference rules that are adapted to
the theory we are considering. For technical reasons, this
theory has to be expressed as two rewrite systems. The
former rewrites terms into terms, the latter rewrites atomic
propositions to arbitrary first-order formulæ. The idea is to
shorten the proofs by precomputing the steps that naturally
occur after the unfolding of a definition corresponding to
the proposition rewrite system.

Supernatural deduction is based on natural deduction
[18] and the new rules can be seen as introduction and elim-
ination rules corresponding to the rewrite rule. Given a
rewrite rule A→ P, its introduction rule is computed by ap-
plying from bottom to top all the introduction rules of fig-
ure 3 on P∗ while a ∗ remains. The premises of the new rule
are then the remaining open leaves, whereas its conclusion
is A, and we keep all the freshness conditions. Elimination
rules are computed using the elimination rules of figure 3
from top left to bottom. All rules are then applied modulo
the term rewrite system (see [15]).
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Example 1: Let C rab be the rule A→ B∧ (A⇒C).
The computation of the introduction rule is

Γ ` B∗
Γ,A `C∗

Γ ` (A⇒C)∗

Γ ` (B∧ (A⇒C))∗

and the new rule is therefore

Γ `+B Γ,A `+C
C rabI

Γ `+A
The computation of the elimination rules are

Γ ` (B∧ (A⇒C))∗

Γ ` B∗ and

Γ ` (B∧ (A⇒C))∗

Γ ` (A⇒C)∗ Γ ` A
Γ `C∗

and the new rules are therefore

Γ `+AC rabE1
Γ `+B

and Γ `+A Γ `+AC rabE2
Γ `+C

3.2. Super sequent calculus

The super sequent calculus was introduced by Brauner,
Houtmann and Kirchner [8] as the analog of supernatural
deduction for the sequent calculus for classical logic. We
propose here its counterpart for intuitionistic logic. It is
based on LB (see Section 2.1). The idea to compute the left
(resp. right) rule for a rewrite rule A→P is to apply LB rules
on Γ,P∗ ` ∆ (resp. Γ ` P∗,∆) unless there is a permutation
problem. Rules for the computation of super sequent rules
LB+ are summed up in figure 4. Once again, all inference
rules are applied modulo the term rewrite system.
Example 2: We consider the rewrite rule C rab of Exam-
ple 1. The computation of the left rule is

Γ,B,C∗ ` ∆ Γ,B ` A∗,∆
Γ,B∗,(A⇒C)∗ ` ∆

Γ,(B∧ (A⇒C))∗ ` ∆

and the new rule is therefore

Γ,B,C `+∆ Γ,B `+A,∆
C rabL

Γ,A `+∆

The computation of the right rule is

Γ ` B∗,∆
Γ,A `C∗

Γ ` (A⇒C)∗,∆
Γ ` (B∧ (A⇒C))∗,∆

and the new rule is therefore

Γ `+B,∆ Γ,A `+C
C rabR

Γ `+A,∆

Left rules: Right rules

Γ,A ` ∆

Γ,A∗ ` ∆

Γ ` A,∆

Γ ` A∗,∆

Γ,> ` ∆

Γ,>∗ ` ∆
Γ ` >∗,∆

Γ,Q∗ ` ∆ Γ ` P,∆
Γ,(P⇒ Q)∗ ` ∆

Γ,P ` Q∗

Γ ` (P⇒ Q)∗,∆

Γ,P∗,Q∗ ` ∆

Γ,(P∧Q)∗ ` ∆

Γ ` P∗,∆ Γ ` Q∗,∆
Γ ` (P∧Q)∗,∆

Γ,({t/x}P)∗ ` ∆

Γ,(∀x. P)∗ ` ∆

Γ ` P∗
x not free in Γ

Γ ` (∀x. P)∗,∆

Figure 4. Rules for computing super left and
right rules

We also introduce the notion of permutation-problem
free formulæ, for which we will prove that the atomic su-
per sequent calculus is complete:

Definition 5 (Permutation-problem freeness). The set of
permutation-problem free formulæ (ppf formulæ) is build
on the the following grammar:

P def= A | > | A⇒ P | P∧P | ∀x. P

where A denotes an atomic proposition.
A rewrite rule is said to be ppf if its right-hand side is

ppf, and so does a rewrite system if all its rules are.

Proposition 3 (Atomic LB+). If the rewrite system is ppf,
and Γ and ∆ contains only atomic formulæ, then Γ ` ∆ is
provable iff it is provable with only identity and super rules.

Proof. The idea is to use a procedure similar to the cut
elimination, which transforms cuts around a formula with
a connector, into cuts around subformulæ. This shows that
we only need atomic cuts. Then, remark that the rewrite
system is ppf iff the new left and right rules contains only
atomic propositions. Thus, starting with atomic proposi-
tions, we can only apply atomic cuts or super rules, and
these do not introduce non-atomic propositions. More de-
tails can be found in Appendix A.1.

3.3. Translations between these systems

The proofs of this section can be found in Appendix A.

THEOREM 4.
For a given rewrite system, any sequent provable in NJ+

can be proved in LB+.
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Corollary 5. A sequent is provable in LB+ if it is provable
in LB adding a compatible theory in the sense of [15, Defi-
nition 1.4] in the hypotheses.

Proof. Wack [27] proved that NJ+ is equivalent to NJ with
assumptions in the compatible theory, and we can translate
every proof of LB into NJ, as well as proofs in NJ+ into
proofs of LB+.

Note: LB+ without the cut rule may be incomplete in that
sense, as shown by the example of the C rab rule. In LB+

there is no cut-free proof of B `+C but we can build the first
proof of figure 5 with cuts.

THEOREM 6.
A proof of a sequent in LB+ using only identity and super
rules can be transformed into a proof of the same sequent
in NJ+ using only super rules and Axiom.

Corollary 7. For ppf rewrite systems, sequents containing
only atomic propositions can be proved in NJ+iff they do
using only super rules and Axiom.

Note: The admissibility of the cut rule in the super sequent
calculus is not needed for the completeness of the atomic
supernatural deduction. For instance, for the rewrite rule
C rab, the first proof of B `+C in LB+ in figure 5 is translated
into the second proof in NJ+ which indeed contains only
atomic formulæ.

4. PTS as superdeductive theories

In this section, we consider some functional PTS
〈S ,A ,R 〉, we define its corresponding superdeductive sys-
tem and prove the soundness and conservativeness of the
translation.

4.1. The system

The term rewrite rules correspond to some λ-calculus
with explicit substitutions λW . As we do not want to rely
on a particular calculus, we use the scheme proposed by
Kesner [22]. See Section 2.3.

We also use some function symbols to represent the Π

binder of the PTS. As done in [11], we need a new function
symbol π̇〈s1,s2,s3〉 for each rule 〈s1,s2,s3〉 ∈ R . We need to
tell how they interact with explicit substitutions by adding
term rewrite rules:

π̇〈s1,s2,s3〉 (a,b) [s]→ π̇〈s1,s2,s3〉 (a [s] ,b [lift(s)]) .

Note that we use lift on the second argument as is done for λ

in (Lambda), because some variable is bound by π̇〈s1,s2,s3〉.
We also need a constant s for each sort s ∈ S . We add

the following term rewrite rules, which permit to avoid pre-
cooking the s constants in the translation from PTS terms to

Γ `+ε
(
π̇〈s1,s2,s3〉 (a,b) ,s3

)
(2)E1

Γ `+ε(a,s1)

Γ `+ε
(
π̇〈s1,s2,s3〉 (a,b) ,s3

)
Γ `+ε(u,a)

(2)E2
Γ `+ε(b [cons(u)] ,s2)

Γ `+ε
(
t, π̇〈s1,s2,s3〉 (a,b)

)
(3)E1

Γ `+ε
(
π̇〈s1,s2,s3〉 (a,b) ,s3

)
Γ `+ε

(
t, π̇〈s1,s2,s3〉 (a,b)

)
Γ `+ε(u,a)

(3)E2
Γ `+ε(t u,b [cons(u)])

Figure 7. Elimination rules of the NJ+ systems
for the PTS

first-order terms (see below):

s [t]→ s .

In the following, −→ designates the rewrite relation associ-
ated with the term rewrite system we have just defined.

Let ε : T×T be a predicate. ε(a,b) should be seen as a
has type b. The proposition rewrite rules permits to simulate
the inference rules of the PTS:

ε(s1,s2) → > (〈s1,s2〉 ∈ A) (1)
ε
(
π̇〈s1,s2,s3〉 (a,b) ,s3

)
→ ε(a,s1)∧ (2)

∀z. ε(z,a)⇒ ε(b [cons(z)] ,s2)
ε
(
t, π̇〈s1,s2,s3〉 (a,b)

)
→ ε

(
π̇〈s1,s2,s3〉 (a,b) ,s3

)
∧ (3)

∀z. ε(z,a)⇒ ε(t z,b [cons(z)])

These rewrite rules leads to the inference rules in supernat-
ural deduction represented in figures 6 and 7.

We can now define a translation from PTS terms (i.e.
well-typed pseudo terms) into our first-order terms. This
translation is inspired from the one between λ-calculus with
de Bruijn indices and λσ with precooking [13, Definition
4.1], except that we translate directly from a λ-calculus with
names, and we deal with the binder Π. ` means the length
of the list ` in the usual sense.

Definition 6 (Translation). The translation takes as param-
eters a context Γ and a list ` (which are omitted if un-
changed):

|x|`1::x::`2

def= `1 +1 if x 6∈ `1

|x|`
def= x [shift]` if x 6∈ `

|s|`
def= s (s ∈ S)

|λx : A T |Γ`
def= λ |T |Γ[x:A]

x::`
|A B| def= |A| |B|

6



Axiom
B,A,B,C `+C

Axiom
B,A,B `+A,C

C rabL
B,A,A `+C

Axiom
B,A `+A,C

Cut
B,A `+C

?Axiom
B `+B,C B,A `+C

C rabR
B `+A,C

Cut
B `+C

Axiom
B `+B

Axiom
B,A `+A

Axiom
B,A `+A

C rabE2
B,A `+C

C rabI
B `+A

Axiom
B `+B

Axiom
B,A `+A

Axiom
B,A `+A

C rabE2
B,A `+C

C rabI
B `+AC rabE2

B `+C

Figure 5. Example of the non-admissibility of cut in LB+ and its translation in NJ+

(1)I 〈s1,s2〉 ∈ A
Γ `+ε(s1,s2)

Γ `+ε(a,s1) Γ,ε(z,a) `+ε(b [cons(z)] ,s2)(2)I z not free in Γ, 〈s1,s2,s3〉 ∈ R
Γ `+ε

(
π̇〈s1,s2,s3〉 (a,b) ,s3

)
Γ `+ε

(
π̇〈s1,s2,s3〉 (a,b) ,s3

)
Γ,ε(z,a) `+ε(t z,b [cons(z)])

(3)I z not free in Γ, 〈s1,s2,s3〉 ∈ R
Γ `+ε

(
t, π̇〈s1,s2,s3〉 (a,b)

)
Figure 6. Introduction rules of the NJ+ systems for the PTS

|Πx : A B|Γ`
def= π̇〈s1,s2,s3〉

(
|A|Γ` , |B|Γ[x:A]

x::`

)
where s1 corresponds the type of A in Γ, s2 the type of B in
Γ[x : A], and 〈s1,s2,s3〉 ∈ R .

Then, a context is translated inductively by |[]| def= /0

and |Γ[x : A]| def= |Γ| ,ε
(

x, |A|Γ[]
)

, and a typing judgment

Γ P̀TS A : B is translated into |Γ| `+ε

(
|A|Γ[] , |B|

Γ

[]

)
. In the

following, contexts and lists will be omitted if they can be
deduce from the environment.

Note that this translation is deterministic, because the
PTS is assumed to be functional. Note also that if Γ ⊆ Γ′

then |T |Γ = |T |Γ
′

if they are defined, by [4, Lemma 5.2.12].

4.2. Soundness and conservativeness

We need the following properties to prove the soundness
and the conservativeness of the NJ+ system w.r.t. the PTS.
Their proofs can be found in Appendix B.

Lemma 8. • |B|x
[
cons(|U |[])

] ∗←→|{U/x}B|[].

• If |A| ∗−→a then there exists A′ such that a ∗−→|A′|.

• |B|z = {1/z [shift]}(|B|[] [shift])

• If 〈s1,s2,s3〉 ∈R , Γ P̀TS A : s1 and Γ[x : A] P̀TS B : s2, x

is not free in b, a ∗−→|A|Γ and b [cons(x)]−→|B|Γ[x:A]

then π̇〈s1,s2,s3〉 (a,b) ∗←→|Πx : A B|Γ.

• If π̇〈s1,s2,s3〉 (a,b) ∗−→|C| then there exists A, B such
that C = Πx : A B.

THEOREM 9 (Soundness).
For all PTS terms T and A, if Γ P̀TS T : A then

|Γ| `+ε(|T |, |A|) .

Proof. The typing rules of the PTS, represented on Fig-
ure 2, are translated into the corresponding derivations in
NJ+ represented on Figure 8. We add some comments:

The ≡ derivations are not really inference rules, but cor-
responds to the fact that we are working modulo the term
rewrite system λW ; they permit to let the computation ap-
pear. Γ′ in the translation of Abstraction is |Γ| ,ε(z, |A|). In
the translation of Conversion, we do not check the type of
the converts; this is not problematic as shown by the con-
servativeness result below. In the translation of Variable,
ε(x, |A|) is in |Γ| by definition of the translation of a context.
In the translations of Abstraction and Product, we use the
fact that z is free in |Γ| to translate proofs of Γ[x : A] P̀TS α

into proofs of Γ[z : A] P̀TS{z/x}α. In the translation of Ab-
straction, we know that |s| = s3 by Lemma 2.
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|Γ| `+ε(|A| ,s1)

|Γ| ,ε(z, |A|) `+ε(|{z/x}B| ,s2)≡ Lem. 8
|Γ| ,ε(z, |A|) `+ε(|B|x [cons(z)] ,s2)

(2)I z not free in |Γ|
|Γ| `+ε

(
π̇〈s1,s2,s3〉 (|A| , |B|x) ,s3

)
Empty :

Declaration :

we do not need to look at the
wellformedness of the context

|Γ| `+ε
(
|T | , π̇〈s1,s2,s3〉 (|A| , |B|x)

)
|Γ| `+ε(|U | , |A|)

(3)E2
|Γ| `+ε(|T | |U | , |B|x [cons(|U |)])

≡ Lem. 8
|Γ| `+ε(|T | |U | , |{U/x}B|)

(1)I 〈s1,s2〉 ∈ A
Γ `+ε(s1,s2) |Γ| `+ε

(
π̇〈s1,s2,s3〉 (|A| , |B|x) ,s3

) Γ′ `+ε(|{z/x}T | , |{z/x}B|)
≡ (λ |T |x)z

∗−→
|T |x [cons(z)]

Γ′ `+ε((λ |T |x)z, |B|x [cons(z)])
(3)I z not free in |Γ|

|Γ| `+ε
(
λ|T |x, π̇〈s1,s2,s3〉 (|A| , |B|x)

)
Axiom

|Γ| `+ε(x, |A|) Conversion: using λW in the modulo

Figure 8. Derivations in NJ+ corresponding to the typing rules of a PTS (see Figure 2)

THEOREM 10 (Conservativeness).
For all well-formed context Γ, for all terms a, b if
|Γ| `+ε(a,b) then there exists A and B such that
a ∗−→|A|Γ, b ∗−→|B|Γ and Γ P̀TS A : B.

Proof. By induction on the proof of |Γ| `+ε(a,b) and the
number of uses of the modulo on terms.

If the last rule is applied modulo the term rewrite system,
we apply it without modulo and then consider the modulo:

|Γ| `+ε(a′,b′)
≡ a ∗←→a′

b ∗←→b′|Γ| `+ε(a,b)

By induction hypothesis, there exists some A′ and B′ such
that a′ ∗−→|A′|, b′ ∗−→|B′| and Γ P̀TS A′ : B′. By conflu-

ence of λW , there exists a′′ such that a ∗−→a′′ ∗←−|A′|. By
Lemma 8 there exists some A such that a′′ ∗−→W |A|. By sub-
ject reduction, Γ P̀TS A : B′. By confluence of λW , there ex-

ists b′′ such that b ∗−→b′′ ∗←−|B′|. By Lemma 8 there exists
B such that b′′ ∗−→|B|. By Lemma 1, either B′ is a sort, in
which case it is in normal form and B = B′, or there exists
some sort s ∈ S such that Γ P̀TS B′ : s, and by subject reduc-
tion Γ P̀TS B : s. Therefore, using Conversion we deduce that
Γ P̀TS A : B. In the following we can therefore assume that
the inference rules are applied without modulo. We use the
names of the variables used on Fig. 6 and 7.

• If the last rule is an axiom, hence of the form:
Axiom

|Γ1|,ε(x,b) , |Γ2| `
+

ε(x,b)

By definition of the translation of contexts, this means that
b = |B| with x : B ∈ Γ. Because by assumption Γ is well-
formed, we can therefore use Variable to get a proof of
Γ P̀TS x : B .

• If the last rule is (1)I : as Γ is assumed to be well-
formed, we can apply Sort.

• If the last rule is (2)I : By induction hypothesis on
the left subproof, there exists A such that a ∗−→|A| and
Γ P̀TS A : s. As z is free in Γ, Γ[z : A] is well-formed.
Therefore we can use the induction hypothesis on the right
subproof: there exists B such that b [cons(z)] ∗−→|B| and
Γ[z : A] P̀TS B : s2. We can consider that z is free in b, hence

by Lemma 8 π̇〈s1,s2,s3〉 (a,b) ∗←→|Πz : A B|, so we can con-
clude using the confluence of λW , subject reduction and
Product.

• If the last rule is (3)I : By induction hypothesis on
the left subproof, there exists C such that Γ P̀TSC : s3

and π̇〈s1,s2,s3〉 (a,b) ∗−→|C|. By Lemma 8 there exists
A, B1 such that C = Πx : A B1. Because λW can-
not change the function symbols π̇〈s1,s2,s3〉, that means
that |C| = π̇〈s1,s2,s3〉 (|A| , |B1|x), a ∗−→|A| and b ∗−→|B1|x.
Hence Γ P̀TS A : s1, and the context Γ[z : A] is well-
formed because z is free in |Γ|. By induction hypoth-
esis on the right subproof, there exists T ′, B2 such that
Γ[z : A] P̀TS T ′ : B2 with tz ∗−→|T ′| and b [cons(z)] ∗−→|B2|.
By Lemma 8 |{z/x}B1|

∗←→|B2|, hence by confluence
of λW and Lemma 8 there is a B such that |B| is a
common reduct. By α-conversion and subject reduction
Γ P̀TS Πz : A B : s3 and using Conversion Γ[z : A] P̀TS T ′ : B.
Using Abstraction we obtain Γ P̀TS λz : A T ′ : Πz : A B. By

Lemma 8, π̇〈s1,s2,s3〉 (a,b) ∗−→Πz : A B.

Now consider the reduction tz ∗−→|T ′|. There are two cases:
Either the outermost application never reduces, and there-
fore |T ′|= t1z. In that case, by definition of the translation,
we must have T ′ = (T z) for some T with t ∗−→|T |. By sub-
ject reduction for η, from Γ P̀TS λz : A (T z) : Πz : A B we
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obtain Γ P̀TS T : Πz : A B.

In the other case, we have tz ∗−→(λt1)z
∗−→|T ′|. Because z

is not free in Γ, we can consider it is not free in t. Therefore
λ(t [shift] 1) = {1/z [shift]}λ(t [shift] z [shift])

= λ({1/z [shift]}((tz) [shift]))
∗−→ λ

(
{1/z [shift]}(|T ′|[] [shift])

)
∗←→

Lem. 8
λ |T ′|z = |λz : A T ′|

But λ(t [shift] 1) ∗−→ λ((λt1) [shift] 1)
∗−→ λ((λt1 [lift(shift)])1)

−→(Beta) λ(t1 [lift(shift)] [cons(1)])
∗−→

[22, Lem. 4.5]
λt1

∗←− t .

Therefore t ∗←→|λz : A T ′| and by confluence of λW

and Lemma 8, there exists T such that t ∗−→|T | and
λz : A T ′ ∗−→βT . We conclude by subject reduction.

• If the last rule is (2)E1: By induction hypothesis, there
exists T such that π̇〈s1,s2,s3〉 (a,b) ∗−→|T | and Γ P̀TS T : s3.
By Lemma 8, there exists A,B such that T = Πx : A B
and a ∗−→|A|. Then by definition of the translation, |T | =
π̇〈s′1,s′2,s′3〉 (a

′,b′) where s′1 is the type of A in Γ, which exists
because Γ P̀TS Πx : A B : s3. But the λW reductions can-
not change the function symbol π̇〈s1,s2,s3〉, hence s1 = s′1 and
Γ P̀TS A : s1.

• If the last rule is (2)E2 or (3)E1: this comes from the
definition of the translation, as in the previous case. We
also need Substitution in Lemma 1 for (2)E2.

• If the last rule is (3)E3: Using the same techniques
as in the previous cases, by induction hypothesis, we get
proofs of Γ P̀TS T : Πx : A B and Γ P̀TSU : A for some

A, B, T , U such that a ∗−→|A|, b ∗−→|B|, t ∗−→|T | and
u ∗−→|U | Using Application we get Γ P̀TS(T U) : {U/x}B.

We can conclude because tu ∗−→|(T U)| and by Corollary 8
b[cons(u)] ∗−→|{U/x}B|.
• If the last rule is another (i.e. logical) rule: we do not

need this case because of Corollary 7.

Note: Because terms are β-convertible on the left of
ε(·, ·) too, there is no correspondence between the term on
the left of ε(·, ·) and the proof in NJ+. Nevertheless, the
former is β-convertible to a term corresponding to the lat-
ter. This also implies that we cannot hope for a stronger
result, since for instance it is not possible to find accurate
types to prove

λ̀Π
((λx : ? λy : ? y λx : ? (x x)) ∗) : � in the

PTS λΠ whereas we can prove `+ε((λλ1)(λ11)?,�) in the
corresponding supernatural deduction.

But, for Theorem 10, if the PTS is strongly normalizing,
then A and B are too, so a and b are weakly normalizing
and we can reach some |A′| and |B′| from a and b such that
Γ P̀TS A′ : B′ by simulating leftmost β-reduction.

5. Applications

5.1. Using λσ for the explicit-substitution calculus

Because λσ [1] is an instance of the scheme (see [22]),
we can use it as λ-calculus with explicit substitutions. If we
do so, Lemma 8 becomes

Lemma 11. |B|x
[
|U |[] · id

] ∗−→|{U/x}B|[]

It means that in the proof of soundness, rewriting is per-
formed from bottom to top after an introduction rule, and
from top to bottom after an elimination rules. If we translate
such a proof into LB+ using Theorem 4, terms are rewrit-
ten only from the bottom to the top of the proof. This
corresponds to the asymmetric sequent calculus modulo of
Dowek [12]. This is also what is actually implemented in
the proof assistant based on superdeduction Lemuridæ [8],
where terms can only be reduced when building the proof
tree from bottom to top.

5.2. A sequent calculus for Pure Types Systems

By applying Theorem 4 we obtain a sequent calculus
presentation of Pure Type Systems. We do not detail all su-
per left and right rules—that can be computed by the reader
using Figure 4—but only the rules for (3):

Γ,ε
(
π̇〈s1,s2,s3〉 (a,b) ,s3

)
,ε(t u,b [cons(u)]) `+∆

Γ,ε
(
π̇〈s1,s2,s3〉 (a,b) ,s3

)
`+ε(u,a) ,∆

(3)L
Γ,ε

(
t, π̇〈s1,s2,s3〉 (a,b)

)
`+∆

Γ `+ε
(
π̇〈s1,s2,s3〉 (a,b) ,s3

)
,∆

Γ,ε(z,a) `+ε(t z,b [cons(z)])
(3)R

Γ `+ε
(
t, π̇〈s1,s2,s3〉 (a,b)

)
,∆

We can see how (3)L can be used to apply a function t to an
argument u.

Sequent calculi for PTS were already introduced by
Gutiérrez and Ruiz [20] and by Lengrand et al. [23]. It
remains to be investigated how the superdeductive system
relates to these, what does not seem trivial.

6. Conclusion

We have defined a natural encoding from functional PTS
into supernatural deduction. We can therefore characterize
PTS as first-order theories. We have proved the correctness
and conservativeness of the translation, leading to a corre-
spondence between valid typing judgments in the PTS and
β-reducts of provable sequents in supernatural deduction.
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We also have proved, through an equivalence with the super
sequent calculus, that we only need the newly computed
rules to show sequents consisting only of atomic proposi-
tions. This is a general result which shows how superde-
duction can be used as a logical framework by encapsulat-
ing the propositions of the system we want to encode into ε

constructs. Having encoded all reasonable PTS proves how
powerful this can be. It is worth to note how close the su-
perdeductive system is to the PTS. We also obtain sequent
calculus presentations of PTS, which are to be compared to
existing ones [20, 23].

We can then use this encoding to check proofs produced
by proof assistants based on PTS. To do so, we could, be-
cause of the equivalence with first-order logic without mod-
ulo but within a compatible theory T , use an intuitionistic
first-order theorem prover. To prove a theorem A, we have
to prove that it is inhabited if seen as a type, and thus to
prove T ` ∃t. ε(t, |A|). Notwithstanding, this would prob-
ably be very inefficient, because the theorem prover would
not be adapted to this particular theory. It should be bet-
ter to use theorem provers based on superdeduction, such
as the proof assistant Lemuridæ which has to be adapted
for intuitionistic logic. (For the moment, it can be used be-
cause classical super rules subsumes intuitionistic ones, but
we cannot guarantee the conservativeness.) Possibly, we
could also use tools based on deduction modulo—there ex-
ists translations between supernatural deduction and deduc-
tion modulo that relatively preserve proof structures [7]—
using procedures such as ENAR [15] or TaMed [6]. But
to fully be able to check proofs from assistants, we also
need to encode inductive types, that are present in many
provers, such as e.g. Coq. This can also naturally be done
in superdeduction, as shown by a recent work of Allali and
Brauner [2]. Another benefit of having such a translation
is the simplicity of first-order logic, and the fact that it is
well-known and widely used. First, the implementation of a
first-order system is often easier than of an higher-order one,
because it is closer to the machine representation. Indeed,
the proof checking code of Lemuridæ [8] is very simple,
especially compared to the type checker of Coq, which is
but claimed to be relatively small. Second, people are often
most used to work using first-order logic, even if they some-
times need higher-order constructs, and the Π constructs in
the PTS may at first be disturbing. This paper also permits
to make proof assistants cooperate, in the sense of Europa
and Fellowship. Nevertheless, the translation of a library
of one assistant into another will be its encoding using ε,
which is probably not convenient to develop proofs in the
other assistant. An idea is then to decode this, using for in-
stance ||ε

(
t, π̇〈s1,s2,s3〉 (a,b)

)
|| = Πx : ||ε(x,a) || ||ε(tx,b) ||.

However, such an naive decoding is not correct if we trans-
late one PTS into another. It remains to be investigated in
which cases the decoding is safe.

An important remaining issue is the decidability of type
checking/proof search. Type checking is undecidable for
PTS in general, but it is decidable for functional PTS that
weakly normalizes [5]. In that case, the conservativeness
proves that proof search in NJ+ is at most semi-decidable,
even if we are working modulo an undecidable congruence
(λW ). (Note that proof search for atomic sequents with well-
formed context in NJ+ corresponds to type checking in the
PTS.) We conjecture that it is in fact decidable for atomic
sequents, due to the strong correspondence between the two
systems. In a related topic, we also have to look at the
normalization of the NJ+ system for PTS, i.e. to check if
proof terms associated with a NJ+ proof (which are in fact
ρ-terms [10]) strongly normalize. Due to the conservative-
ness, there is a correspondence between a NJ+ proof and a
term of the PTS, at least when contexts are well formed. Ab-
straction corresponds to the introduction rule (3)I and Ap-
plication to the elimination rule (3)E2, so that β-redex of
PTS are translated into ρ-redex of NJ+. The normalization
of this NJ+ system is therefore probably equivalent to the
normalization of the PTS. By the way, it remains to extend
the rewrite systems with some rules to check for the well-
formedness of contexts, to have a full correspondence.

We should also try to encode more deductive systems
into superdeduction. Indeed, the naturalness of our transla-
tion into supernatural deduction probably comes from the
fact that PTS are extensions of simply-typed λ-calculus
which is isomorph to natural deduction. This could be seen
as an attenuation of our claim that superdeduction is a pow-
erful logical framework. It is but able to encode elaborated
deduction systems and theories, such as PTS, as we have
seen, HOL [14, 8], (higher-order) arithmetic [17, 9] and
Zermelo’s set theory [16].
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A. Proofs of the equivalence between LB+ and
NJ+

A.1. Properties of LB+

Definition 7 (Proof skeleton). The skeleton of a proof is the
tree of the inference rules used in it.

Definition 8 (Structural inclusion). We say that a proof π

is structurally included into a proof ϖ if the skeleton of π is
included in the skeleton of ϖ in the sense of tree inclusion.

Proposition 12 (Admissibility of the weakening). If Γ ` ∆

can be proved in LB+, so does Γ′,Γ ` ∆,∆′, with the same
skeleton.

Proof. By induction on the proof and on the formulæ in the
right-hand side of the rewrite system.

Lemma 13. Let R be the rewrite rule A→P with associated
left super rule

(Γ,Γi ` ∆i,∆)iRL
Γ,A ` ∆

Suppose that for all i there exists some Ci ∈ ∆i,∆ such
that Γ,Γi `Ci is provable.

Then there exists some C ∈ ∆ such that either Γ ` C is
provable or Γ,Γi ` ∆i,C is provable for all i. Note that in
both cases, Γ,A `C is provable.

Proof. By induction on P we can easily show that right
rules are of the form

(Γ,Γi ` ∆i,∆)i∈IRL
Γ,A ` ∆

and that there exists i0 ∈ I such that for all i ∈ I, Γi0 ⊆ Γi.
We proceed by induction on P.
Suppose that for all i there exists some Ci ∈ ∆i,∆ such

that Γ,Γi `Ci is provable.
If Ci0 ∈ ∆, then Γ,Γi0 `Ci0 is provable, and by weaken-

ing, for all i we can prove Γ,Γi ` ∆i,Ci0 .
Suppose Ci0 ∈ ∆i0 . We can show that for all i, if some

formula C is in Deltai then C appears on the left of some im-
plication in P. Therefore P = D[Ci0 ⇒ P′] for some context
D and proposition P′. Let S be the rewrite rule B→ D[P′].
Then by definition, if I′ = {i ∈ I : Ci0 6∈ ∆i}, the left rule for
S is

(Γ,Γi ` ∆i,∆)i∈I′SL
Γ,B ` ∆

By induction hypothesis, there exists some C ∈ ∆ such
that either Γ ` C is provable, which permits to conclude,
or for all i ∈ I′, Γ,Γi ` ∆i,C is provable. It remains to be
proved that for all i∈ I \ I′, Γ,Γi ` ∆i,C, but if i∈ I \ I′, then
Γi0 ⊆ Γi and Ci0 ∈ ∆i so that we can conclude by weakening
with the proof of Γ,Γi0 `Ci0 .

Note: The proof of Γ,A ` C obtained at the end is struc-
turally included in the proof of Γ,A ` ∆ we get by applying
RL to the proofs of the supposition.

Lemma 14. Let R be the rewrite rule A→ P.
The associated right super rule is of the form

(Γ,Γi ` Ai)i∈I (Γ ` A j,∆) j∈J
RR

Γ ` A,∆

Suppose for all i ∈ I we can prove Γ,Γi ` Ai and for all
j ∈ J there exists some C j ∈ A j,∆ such that we can prove
Γ `C j.

Then either Γ ` A j is provable for all j ∈ J or there exists
some C ∈ ∆ such that Γ ` ∆. In both cases, there exists some
C ∈ A,∆ such that Γ `C is provable.
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Proof. To prove the form of the right rule, we proceed by
induction on P. The only difficult case is the implication:
suppose P = P1⇒ P2. Let S be the rewrite rule B→ P2. By
induction hypothesis, the right rule for S is of the form

(Γ,Γi ` Ai)i∈I (Γ ` A j,∆) j∈J
SR

Γ ` B,∆

Then by definition the right rule for R is

(Γ,P1,Γi ` Ai)i∈I (Γ,P1 ` A j) j∈J
SR

Γ ` A,∆

which is of the convenient form.
To prove the rest of the lemma, suppose for all i ∈ I

we can prove Γ,Γi ` Ai and for all j ∈ J there exists some
C j ∈ A j,∆ such that we can prove Γ ` C j. If there exists
j ∈ J such that C j ∈ ∆, then we conclude because Γ ` C j.
Otherwise, for all j ∈ J we have C j = A j. That means that
for all j ∈ J we can prove Γ ` A j and by applying the right
rule for R we get a proof of Γ ` A.

Note: The proof of Γ `C obtained at the end is structurally
included in the proof of Γ ` A,∆ we get by applying RR to
the proofs of the supposition.

Proposition 15 (Constructivism). If π is a proof of Γ ` ∆

LB+, then there exists some C ∈ ∆ and of proof of Γ `C in
LB+ which is structurally included in π.

Proof. By induction on the proof. If the last rule is an Ax-
iom or a logical rule, we can easily conclude by induction
hypothesis.

If it is a Cut

π

Γ,P ` ∆

ϖ

Γ ` P,∆
Cut

Γ ` ∆

by induction hypothesis on ϖ, there exists some C ∈ P,∆
such that there exists a proof ϖ′ of Γ ` C in LB+. If C is
in ∆, ϖ′ is a convenient proof. If C = P, by weakening π′

is also a proof of Γ ` P,C By induction hypothesis on π,
there exists some C ∈ ∆ such that there exists a proof π′ of
Γ,P `C in LB+. A convenient proof is therefore

π′

Γ,P `C

ϖ′

Γ ` P,C
Cut

Γ `C
If it is a left super rule, then we can conclude by induc-

tion hypothesis and Lemma 13, and if it is a right super rule,
by induction hypothesis and Lemma 14.

Lemma 16. If we have a formula P of degree d greater
or equal than 2 (i.e. non-atomic), if we have proofs π of
Γ,P ` ∆′ and π′ of Γ′ ` P,∆′ of degree less than d, then we
can a proof of Γ,Γ′ ` ∆,∆′ of degree less than d.

Proof. First remark that if a proof is structurally included
into another, then its degree is less or equal, and that weak-
ening a proof preserve its degree.

First, let remark that we can consider that ∆′= /0. Indeed,
by Proposition 15 with π′, we can prove either Γ′ ` P or
Γ′ ` ∆′ by a proof of degree less than d. In the second case
we conclude by weakening.

By induction on π,π′.

1. If π ends with an axiom. Then either there is some
C ∈ Γ∩∆ in which case we can prove Γ,Γ′ ` ∆ with
an axiom; or P ∈ ∆, in which case π′ is by weakening
a proof of Γ,Γ′ ` ∆.

2. If π′ ends with an axiom: dual to 1.

3. If π ends with a logical or super rule with the active
formula A ∈ Γ∪∆. If A ∈ Γ, let Γ′′ be Γ\{A} and ∆′′

be ∆, otherwise let Γ′′ be Γ and ∆′′ be ∆\{A}. π is

πi

(Γ′′,P,Γi ` ∆i,∆
′′)i

π j

(Γ′′,P,Γ j ` ∆ j) j
r

Γ,P ` ∆

By induction hypothesis, there exists proofs ϖi of de-
gree less than d of Γ′′,Γ′,Γi ` ∆i,∆

′′ and proofs ϖ j of
Γ′′,Γ′,Γ j ` ∆ j.

We conclude with

ϖi

(Γ′′,Γ′,Γi ` ∆i,∆
′′)i

ϖ j

(Γ′′,Γ′,Γ j ` ∆ j) j
r

Γ,Γ′ ` ∆

4. If π′ ends with a logical or super rule with the active
formula A ∈ Γ′. Let Σ be Γ′ \{A}. π′ is

π′i

(Σ,Γi ` ∆i,P)ir
Γ′ ` P

By induction hypothesis, there exists proofs ϖ′i of de-
gree less than d of Γ,Σ,Γi ` ∆i,∆.

We conclude with

ϖ′i

(Γ,Σ,Γi ` ∆i,∆)ir
Γ,Γ′ ` ∆

5. If both π and π′ end with logical or super rules with P
as active formula. Because P is not atomic, these rules
are in fact logical rules.
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• If P = Q∧R, π is

π1

Γ,Q,R ` ∆∧L
Γ,Q∧R ` ∆

and π′

π′1

Γ′ ` Q

π′2

Γ ` R∧R
Γ′ ` Q∧R

We conclude with
π1

Γ,Γ′,Q,R ` ∆

π′2

Γ,Γ′,Q ` R,∆
Cut

Γ,Γ′,Q ` ∆

π′1

Γ,Γ′ ` Q,∆
Cut

Γ,Γ′ ` ∆

• If P is Q⇒ R, π is

π1

Γ ` Q,∆

π2

Γ,R ` ∆⇒L
Γ,Q⇒ R ` ∆

and π′ is

π′1

Γ′,Q ` R⇒R
Γ′ ` Q⇒ R

We conclude with

π2

Γ,Γ′,Q,R ` ∆

π′1

Γ,Γ′,Q ` R,∆
Cut

Γ,Γ′,Q ` ∆

π1

Γ,Γ′ ` Q,∆
Cut

Γ,Γ′ ` ∆

• If P is ∀x. Q, then π is

π1

Γ,{t/x}Q ` ∆
∀L

Γ,∀x.Q ` ∆

for some t and π′

π′1

Γ′ ` Q∀R x not free in Γ′
Γ′ ` ∀x. Q

As x is free in Γ′ we can replace it by t in π′1 to get a
proof ϖ′1 of Γ′ ` {t/x}Q of the same degree.
We conclude with

π1

Γ, ,Γ′{t/x}Q ` ∆

ϖ′1

Γ,Γ′ ` {t/x}Q,∆
Cut

Γ,Γ′ ` ∆

Proposition 3 (Atomic LB+). If the rewrite system is ppf,
and Γ and ∆ contains only atomic formulæ, then Γ ` ∆ is
provable iff it is provable with only identity and super rules.

Proof. First remark that the rewrite system is ppf iff the su-
per rules of LB+ decompose atomic formuæ into atomic for-
mulæ.

Suppose there is a proof of Γ ` ∆. By induction on this
proof. As nor Γ neither ∆ contain non atomic formulæ, there
cannot be a logical rule at the root of the proof. If the rule
at the root of the proof is an Axiom, we are done. If it is
a super rule, we can conclude with the remark above by
induction hypothesis. If it is a Cut, it remains to be proved
that we only need Cuts around atomic formulæ.

Note that as Cut may not be admissible (see Figure 5),
we cannot avoid having Cuts in our proofs. Nevertheless,
we can use some kind of cut elimination procedure to re-
duce to the case of atomic Cut.

Let suppose the last rule is a Cut, we proceed by induc-
tion on the degree of P:

π

Γ,P ` ∆

ϖ

Γ ` P,∆
Cut

Γ ` ∆

If the degree d of P is greater than 1, we can apply the in-
duction hypothesis on the subproof and Lemma 16 to get a
proof of Γ,Γ ` ∆,∆ of degree less than d. Because Γ and ∆

contains only atomic formulæ, we can use Cut to simulate
contraction:

Γ,A,A ` ∆
Axiom

Γ,A ` A,∆
Cut

Γ,A ` ∆

The proof we obtain is therefore if degree less than the de-
gree of P, so we can apply the induction hypothese to con-
clude.

A.2. Translations from NJ+ to LB+

For convenience, proofs in NJ+ in this section and the
following will be represented a la Gentzen [18], instead of
in sequent style.

Lemma 17. Let R be the rewrite rule A→ P.
An elimination rule for R is of the form

A H1 · · · HnRE p K

14



A left rule for R is of the form

(Γ,Γi ` ∆i,∆)iRL
Γ,A ` ∆

Suppose we have proofs of Γ ` H j in LB+ for all j.
Then we can prove Γ,Γi ` ∆i,K in LB+(and thus also

Γ,A ` K).

Proof. The form of the elimination and left rules can be
shown by a simple induction.

The remaining can be proved by induction on the for-
mula P.

• Suppose P is atomic or P =>.

Then the elimination rule of R is

ARE P

The left rule for R is

Γ,P ` ∆
RL

Γ,A ` ∆

We have

Axiom or >R
Γ,P ` P

• Suppose P is P1⇒ P2.

Let S be the rewrite rule D→ P2.

An elimination rule for S is of the form

D H1 · · · HnSE p K

and elimination rules for R are then

A P1 H1 · · · HnRE p K

The left rule for S is of the form

(Γ,Γi ` ∆i,∆)iSL
Γ,D ` ∆

and then the left rule for R is

(Γ,Γi ` ∆i,∆)i Γ ` P1,∆RL
Γ,A ` ∆

Suppose we have proofs π j of Γ ` H j and a proof π0
of Γ ` P1.

By induction hypothesis, there are proofs of Γ,Γi `
∆i,K for all i, and by weakening π0 is a proof of
Γ ` P1,K.

Note: This could not be done in LJ+, because we
cannot have multiple formulæ in the right part of a se-
quent.

• Suppose P is P1∧P2.

Let R1 be the rewrite rule A1 → P1 and R2 be the
rewrite rule A2→ P2.

For k ∈ {1;2}, an elimination rule for Rk is of the form

Ak H1
k,p · · · Hn

k,pRkE p Kk,p

and elimination rules for R are then

A H1
k,p · · · Hn

k,pREk,p Kk,p

The left rule for Rk is of the form

(Γ,Γi ` ∆i,∆)i∈IkRkL
Γ,Ak ` ∆

and then the left rule for R is

(Γ,Γi,Γ j ` ∆i,∆ j,∆)i∈I1, j∈I2RL
Γ,A ` ∆

Let k be 1 or 2.

Suppose we have proofs π j of Γ ` H j
k,p.

By induction hypothesis with Rk, there are proofs of
Γ,Γi `∆i,Kk,p for all p and i∈ Ik. By weakening, these
are also proofs of Γ,Γi,Γ j `∆i,∆ j,Kk,p for all j ∈ I3−k.

• Suppose P is ∀x. Q. Let t be a term actually substituted
for x in RL.

Let S be the rewrite rule D→{t/x}Q.

An elimination rule for S is of the form

D H1 · · · HnSE p K

and elimination rules for R are then

A H1 · · · HnRE p K

The left rule for S is of the form
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(Γ,Γi ` ∆i,∆)iSL
Γ,{t/x}Q ` ∆

and then the left rule for R with t is

(Γ,B,Γi ` ∆i,∆)iSL
Γ,A ` ∆

Suppose we have proofs π j of Γ ` H j.

By induction hypothesis, there are proofs of Γ,Γi `
∆i,K for all i.

THEOREM 4.
A proof of C from Γ in NJ+ can be translated into a proof of
Γ `C in LB+.

Proof. By induction on the NJ+ proof:

• If the last inference rule is a logical rule, then we can
use the same translation as [18].

• If the last rule is a super introduction rule, it is easy to
see that super introduction rules for NJ+ are subcases
of super right rules for LB+ with only one formula in
the right part of the sequents. We can therefore con-
clude by induction.

• If the last rule is a super elimination rule of the form

A H1 · · · HnRE p C

By induction hypothesis, there is a LB+ proof π0 of
Γ ` A and there are LB+ proofs π j of Γ ` H j for all j.

By Lemma 17, there is a proof ϖ of Γ,A `C in LB+.

By weakening, π0 is also a proof of Γ ` A,C.

We can conclude with

ϖ

Γ,A `C

π0

Γ ` A,C
Cut

Γ `C

A.3. Translations from LB+ to NJ+

Lemma 18. Suppose we have a LJ+ proof whose last infer-
ence is

(Γi ` ∆i)iRL
Γ,A ` ∆

where R is A→ P. Suppose for all i there is some Ci in ∆i
such that we have supernatural deduction proofs πi of Ci
from assumptions Γi.

Then there is some C in ∆ such that it is possible to build
a supernatural deduction proof of C from assumptions Γ, A
and using only elimination rules of R and the proofs πi.

Proof. By induction on the formula P.

• Suppose P is atomic or P =>.

Then the last rule of the sequent calculus proof is in
fact

Γ,P ` ∆
RL

Γ,A ` ∆

Therefore, if C ∈ ∆ and π is a proof of C from Γ and P,
then

Γ

ARE P
π

C

is the proof we want.

• Suppose P is P1⇒ P2.

Let S be the rewrite rule D→ P2. By definition of the
left rules, there exists some i0 such that (Γi0 ` ∆i0) =
(Γ ` P1,∆) and

(Γi ` ∆i)i6=i0SL
Γ,D ` ∆

Suppose that for all i 6= i0 we have proofs πi from Γi
to Ci for some Ci ∈ ∆i. By induction hypothesis, we
can build a proof ϖ of C from Γ, D, πi for i 6= i0, and
elimination rules for S.

An elimination rule for S is of the form

D H1 · · · HnSE p K

and elimination rules for R are then

A P1 H1 · · · HnRE p K

By replacing SE p by RE p in ϖ we therefore obtain a
proof of C from Γ, A, B, proofs πi for i 6= i0 and elimi-
nation rules for R.

Suppose that there is some C ∈ P1,∆ such that we have
a proof πi0 from Γ to C (or equivalently from Γi0 to
Ci0 ∈ ∆i0 ). There are two cases : Either C is in ∆, and
thus πi0 is a convenient proof. Or C = P1, and then
we can build a proof from Γ, A, proofs pi for all i and
elimination rules for R by replacing the assumption P1
in ϖ by πi0 .
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• Suppose P is P1∧P2.

Let R1 be the rewrite rule A1 → P1 and R2 be the
rewrite rule A2→ P2.

The left rule for Rk is of the form

(Γ,Γi ` ∆i,∆)i∈IkRkL
Γ,D ` ∆

and then the left rule for R is

(Γ,Γi,Γ j ` ∆i,∆ j,∆)i∈I1, j∈I2RL
Γ,A ` ∆

Suppose that for all i ∈ I1, j ∈ I2 we have proofs πi, j
from Γ,Γi,Γ j to Ci for some Ci ∈ ∆i,∆ j,∆. By induc-
tion hypothesis for R1, there exists some C j ∈ ∆ j,∆
such that there is a proof ϖ j of C j from assumptions Γ,
Γ j, A1, proof πi, j and elimination rules for R1.

An elimination rule for R1 is of the form

A1 H1 · · · HnR1E p K

and some elimination rules for R are then

A H1 · · · HnRE1,p K

By replacing R1E p by RE1,p in ϖ j we therefore obtain
a proof ϖ′j of C j from Γ, Γ j, A, proofs πi, j and elimi-
nation rules for R.

By induction hypothesis for R2 with these ϖ′j, there ex-
ists some C ∈ ∆ such that there is a proof ϖ of C from
assumptions Γ, A2, proof ϖ′j and elimination rules for
R2. Once again, if we replace R2E p by RE2,p in ϖ we
obtain a proof of C from Γ, A, proofs ϖ′j and elimina-
tion rules for R. But proofs ϖ′j use only proofs πi, j and
elimination rules for R, so this proof is convenient.

• Suppose P is ∀x. Q. Let t be the term actually sub-
stituted for x in the super sequent calculus proof of
Γ,A ` ∆.

Let S be the rewrite rule D→{t/x}Q. By definition of
the left rules, we have

(Γi ` ∆i)iSL
Γ,D ` ∆

Suppose that for all i we have proofs πi from Γi to Ci
for some Ci ∈ ∆i. By induction hypothesis, there exists
some C ∈ ∆ such that we can build a proof ϖ of C from
Γ, D, proofs from πi and elimination rules for S.

An elimination rule for S is of the form

D H1 · · · HnSE p K

and elimination rules for R are then

A H1 · · · HnRE p K

By replacing SE p by RE p in ϖ we therefore obtain a
proof of C from Γ, A, proofs πi and elimination rules
for R.

Lemma 19. Suppose we have a LB+ proof whose last in-
ference is

(Γi ` ∆i)iRR
Γ ` A,∆

where R is A→ P. Suppose for all i there is some Ci in ∆i
such that we have supernatural deduction proofs πi of Ci
from assumptions Γi.

Then there is some C in A,∆ such that it is possible to
build a supernatural deduction proof of C from assumptions
Γ and using only the proofs πi, with the introduction rules
of R at the root if C = A.

Proof. By induction on the formula P.

• Suppose P = B is atomic.

Then the last rule of the sequent calculus proof is in
fact

Γ ` B,∆
RR

Γ ` A,∆

Suppose we have a proof π of B from Γ. Then

Γ

π

BRI A

is a convenient proof. Else, if we have a proof π of
some other C ∈ ∆ from Γ, this is a convenient proof.

• Suppose P = >. Then the last rule of the sequent cal-
culus proof is in fact

RR
Γ ` A,∆

The convenient proof is therefore

RI
Γ ` A
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• Suppose P is P1⇒ P2.

Let S be the rewrite rule D→ P2. By definition of the
right rules,

(Γi ` ∆i)iSR
Γ,P1 ` D

(Remark there is only D in the right part of the conclu-
sion.)

Suppose that for all i we have proofs πi from Γi to Ci
for some Ci ∈ ∆i. By induction hypothesis, we can
build a proof ϖ of D from Γ, P1, proofs πi and the
introduction rule for S.

The introduction rule for S is of the form

[A1
1, · · · ,A

p1
1 ]

B1

[A1
m, · · · ,Apm

m ]
BmSI D

and the introduction rule for R is then

[P1,A1
1, · · · ,A

p1
1 ]

B1

[P1,A1
m, · · · ,Apm

m ]
BmRI A

By replacing SI by RI at the root of ϖ we therefore ob-
tain a proof of A from Γ, proofs πi and the introduction
rule for R at the root. (P1 is in the assumptions of all
premises of RI , so that it is no longer an assumption of
the resulting proof.)

Note: Here appears the difference between LB+

and LK+. If we allow multiple right formulæ in the
premises of the right rule for⇒, we do not necessarily
obtain a proof of D from Γ and P1, but we can have
a proof of some other C ∈ ∆, and therefore we cannot
conclude. This explains why, with the rewrite system
A→ (B⇒C)∧D, the sequent D ` A,B can be proved
in LK+ but not in LB+ nor either A or B from D in NJ+.

• Suppose P is P1∧P2.

Let R1 be the rewrite rule A1 → P1 and R2 be the
rewrite rule A2→ P2.

By definition of the right rules, there exists I1 and I2
such that for k ∈ {1;2}

(Γi ` ∆i)i∈IkRkR
Γ ` Ak,∆

and

(Γi ` ∆i)i∈I1 (Γi ` ∆i)i∈I2RR
Γ ` A,∆

Suppose that for all i ∈ I1∪ I2 we have proofs πi from
Γi to Ci for some Ci ∈ ∆i. By induction hypothesis,
there exists some Ck ∈ Ak,∆ such that we can build a
proof ϖk of C from Γ, proofs πi and the introduction
rule for Rk.

If Ck ∈ ∆ for k = 1 or k = 2, ϖk is a convenient proof.

In the other case, the introduction rule for Rk is of the
form

[A1
k,1, · · · ,A

p1
k,1]

Bk,1

[A1
k,m, · · · ,Apm

k,m]

Bk,m
RkI Ak

and the introduction rule for R is then(
[A1

k, j, · · · ,A
p j
k, j]

Bk, j

)
k, j

RI A

We can replace R1I and R2I at the root of ϖ1 and ϖ2
by RI to obtain a proof of A from Γ, proofs πi and the
introduction rule for R at the root.

• Suppose P is ∀x. Q.

Let S be the rewrite rule D(x)→Q. Supposing x is free
in Γ, by definition of the right rules,

(Γi ` ∆i)iSR
Γ ` D(x)

Suppose that for all i we have proofs πi from Γi to Ci
for some Ci ∈ ∆i. By induction hypothesis, we can
build a proof ϖ of D(x) from Γ, proofs πi and the in-
troduction rule for S.

The introduction rule for S is of the form

[A1
1, · · · ,A

p1
1 ]

B1

[A1
m, · · · ,Apm

m ]
BmSI D(x)

and the introduction rule for R is then

[A1
1, · · · ,A

p1
1 ]

B1

[A1
m, · · · ,Apm

m ]
BmRI x not free in the assumptions

A

But we are supposing that x is free in Γ, so that we can
replace SI by RI in ϖ to get a proof of A from Γ, proofs
πi and the introduction rule for R.
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THEOREM 6.
A proof of the sequent Γ `C in LB+ using only identity and
super rules can be transformed into a proof in NJ+ of C
from Γ using only super rules.

Proof. We prove a stronger result: a proof of the sequent
Γ ` ∆ in LB+ using only identity and super rules can be
transformed into a proof in NJ+ of C from Γ using only
super rules for some C ∈ ∆.

By induction on the LJ+ proof:

• The last rule is an Axiom rule:

Axiom
Γ,A ` A,∆

Then we have a trivial supernatural deduction proof of
A from assumption A.

• The last rule is a cut rule

Γ,A ` ∆ Γ ` A,∆
Cut

Γ ` ∆

By induction hypothesis on the right subproof there ex-
ists a proof π of either A or some C ∈ ∆ from Γ using
only super rules.

In the second case, π is a convenient proof. In the
first case, by induction hypothesis on the left subproof,
there exists a proof ϖ of some C ∈ ∆ from Γ and A us-
ing only super rules. By replacing the assumptions A
by π in ϖ, we obtain a proof of C from Γ.

• The last rule is a right super rule. We can conclude
using Lemma 19 and induction hypothesis.

• The last rule is a left super rule. We can conclude using
Lemma 18 and induction hypothesis.

B. Interactions PTS terms and first-order
terms

Lemma 20. The translation is compatible with the α-
conversion:

|λx : A B|` = |λy : A {y/x}B|`

Proof. By simple induction.

Lemma 21. If x 6∈ `,

|A|`::x::nil
[
lift`(cons(|u|`::nil))

] ∗←→|{u/x}A|`::nil .

Proof. By induction on A.

• If A = x, then |A|`::x::nil
[
lift`(cons(|u|`::nil))

]
=

`+1
[
lift`(cons(|u|`::nil))

]
and |{u/x}A|`::nil = |u|`::nil .

We can conclude with [22, Corollary 3.2].

• If A = y ∈ `, then |A|`::x::nil
[
lift`(cons(|u|`::nil))

]
=

m
[
lift`(cons(|u|`::nil))

]
with m < ` + 1, and

|{u/x}A|`::nil = |y|`::nil = m. We can conclude
with [22, Corollary 3.2].

• If A = y 6∈ ` :: x, then |A|`::x::nil
[
lift`(cons(|u|`::nil))

]
=

y [shift]`+1 [
lift`(cons(|u|`::nil))

]
, and |{u/x}A|`::nil =

|y|`::nil = y [shift]`. By [22, Corollary 5.7],

y [shift]`+1 [
lift`(cons(|u|`::nil))

]
∗←→ y [shift] [cons(|u|`::nil)] [shift]`

∗←→ y [shift]`

• The interesting case is the abstraction over x, with y 6=
x:

|λx : A B|`::x::nil
[
lift`(cons(|u|`::nil))

]
= |λy : A {y/x}B|`::x::nil

[
lift`(cons(|u|`::nil))

]
∗←→ λ

(
|{y/x}B|y::`::x::nil

[
lift`+1(cons(|u|`::nil))

])
∗←→

IH
λ

(
|{u/x}{y/x}B|y::`::nil

)
= λ

(
|{y/x}B|y::`::nil

)
= |λy : A {y/x}B|`::nil

= |λx : A B|`::nil

= |{u/x}λx : A B|`::nil

Lemma 8. |A|x::nil [cons(|u|)] ∗←→|{u/x}A|.

Proof. Corollary of the previous lemma.

Lemma 8bis. If |A| ∗−→a then there exists A′ such that
a ∗−→|A′|.

Proof. By definition, the W -normal form of a is a pure term
[22, Definition 3.4], and it can therefore be translated back
into some A′ such that a ∗−→W |A′|.

Lemma 22. If z does not appear in `, |A|`::z::nil =
{1/z [shift]}

(
|A|`::nil

[
lift`(shift)

])
Proof. By induction on A.
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• If A = z, then |A|`::z::nil = `+1
and {1/z [shift]}

(
|A|`::nil

[
lift`(shift)

])
=

{1/z [shift]}
(

z [shift]`
[
lift`(shift)

])
which is by [22,

Corollary 5.5] {1/z [shift]}
(

z [shift]`+1
)

= 1 [shift]`

which is by definition of the scheme `+1.

• If A = y ∈ `, then |A|`::z::nil = m with
m < ` and {1/z [shift]}

(
|A|`::nil

[
lift`(shift)

])
=

{1/z [shift]}
(
m

[
lift`(shift)

])
which is by [22, Corol-

lary 3.2] {1/z [shift]}m = m.

• If A = y 6∈ ` :: x, then |A|`::z::nil = y [shift]`+1

and {1/z [shift]}
(
|A|`::nil

[
lift`(shift)

])
=

{1/z [shift]}
(

y [shift]`
[
lift`(shift)

])
which is by [22,

Corollary 5.5] {1/z [shift]}
(

y [shift]`+1
)

= y [shift]`+1.

• The interesting case is the abstraction over z, with y 6=
z:

|λz : A B|`::z::nil

=α |λy : A {y/z}B|`::z::nil

= λ

(
|{y/z}B|y::`::z::nil

)
∗←→

IH
λ

(
{1/z [shift]}

(
|{y/z}B|y::`::nil

[
lift`+1(shift)

]))
= {1/z [shift]}λ

(
|{y/z}B|y::`::nil

[
lift`+1(shift)

])
←− {1/z [shift]}

(
λ |{y/z}B|y::`::nil

)[
lift`(shift)

]
= {1/z [shift]}(|λy : A {y/z}B|`::nil)

[
lift`(shift)

]
=α {1/z [shift]}(|λz : A B|`::nil)

[
lift`(shift)

]

Lemma 8ter. |A|z::nil = {1/z [shift]}|A|nil [shift]

Proof. Corollary of the previous lemma

Lemma 8quater (Reduction under Π). • If
〈s1,s2,s3〉 ∈ R , Γ P̀TS A : s1 and Γ[x : A] P̀TS B : s2, x

is not free in b, a ∗−→|A|Γ and b [cons(x)]−→|B|Γ[x:A]

then π̇〈s1,s2,s3〉 (a,b) ∗←→|Πx : A B|Γ.

• If π̇〈s1,s2,s3〉 (a,b) ∗−→|C| then there exists A, B such
that C = Πx : A B.

Proof.

|Πx : A B| = π̇〈s1,s2,s3〉 (a, |B|x::nil)
∗←→

Lem. 8
π̇〈s1,s2,s3〉 (a,({1/x [shift]}|B|nil [shift]))

∗←−
Lem. 8

π̇〈s1,s2,s3〉 (a,({1/x [shift]}b [cons(x)] [shift]))

∗←−
[22, Cor. 5.9]

π̇〈s1,s2,s3〉 (a,({1/x [shift]}b [lift(shift)] [cons(x [shift])]))

=
x not free in b

π̇〈s1,s2,s3〉 (a,(b [lift(shift)] [cons(1)]))

∗−→
[22, Lemma 4.5]

π̇〈s1,s2,s3〉 (a,b)

C. Why are several π̇ necessary?

Because of rule (2)E1: in the calculus of construction,
we could get Girard’s paradox:

(1)I
`+ε(?,�)

Axiom
ε(z,?) `+ε(z,?)

(2)〈�,∗,∗〉
I

1 [cons(z)]
∗−→z`+ε(π̇(?,1),?)

(2)〈∗,∗,∗〉E1 `+ε(?,?)
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