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The complementarity and interaction between computa-
tion and deduction is known since at least Henri Poincaré
and deduction modulo [7] is a way to present first-order
logic taking advantage from this complementarity. Deduc-
tion modulo is at the heart of proof assistants and proof
search methods (for instance see [7, 2]) and getting a deep
understanding of its logical behavior is of prime interest ei-
ther for theoretical or practical purposes.

In deduction modulo, computations are modeled by a
congruence relation between terms and between proposi-
tions. The logical deductions are done modulo this con-
gruence that is often better represented by a rewrite relation
over first-order terms and propositions, leading to the asym-
metric sequent calculus [6].

Even if deduction modulo has been shown to be logi-
cally equivalent to first-order logic, proofs in such systems
are quite different and dramatically simpler with one price:
the Hauptsatz, i.e. the fact that cuts are not needed to build
proofs, is not always true as one can see from an exam-
ple derived from Crabbé’s proof of the non-normalization
of Zermelo’s theory [3] (see for instance [7]). But we know
that this cut-elimination property is fundamental for at least
two related reasons: first, if a system has the cut-elimination
property, then the formulæ needed to build a sequent calcu-
lus proof of some sequent are subformulæ1 of the ones ap-
pearing in it, so that the search space is, in a sense, limited.
Such proofs are sometimes called analytic [6]. The tableaux
method is based on this fact, and for instance TaMeD [2],
a tableaux method based on deduction modulo, is shown to
be complete only for cut-free systems. On the other hand, it
has been shown [8] that a proof search method for deduction
modulo like ENAR [7]—which generalizes resolution and
narrowing—is equivalent to the cut-free fragment of deduc-
tion modulo. ENAR is therefore complete if and only if the
cut-elimination property holds.

So on the one hand, we like to have a powerful congru-
ence but this may be at the price of loosing cut-elimination.
How can we get both? It has been shown in [6] that cut-
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1In the case of deduction modulo, the intuitive notion of subformula

must take the considered rewrite relation into account.

elimination is equivalent to the confluence of the rewrite
system, provided only first-order terms are rewritten. It is
no longer true when propositions are also rewritten, and the
cut-elimination property is in that case a stronger notion
than confluence. Gilles Dowek wanted therefore to build a
generalized completion procedure whose input is a rewrite
system over first-order terms and atomic propositions and
computing a rewrite system such that the associated sequent
calculus modulo has the cut-elimination property. Such a
completion procedure was proposed for the quantifier free
case in [5], based on the construction of a model for the
theory associated with the rewrite system.

To solve this question, including a limited use of quanti-
fiers, we use here a quite different approach based on the no-
tion of abstract canonical system and inference introduced
in [4, 1]. This abstract framework is based on a proof order-
ing whose goal is to apprehend the notion of proof quality
from which the notions of canonicity, saturation and redun-
dancy follow up.

To present the general idea of our approach, let
us consider the simple example of Crabbé’s axiom [3]
A ⇔ B∧¬A. Can we find, for the sequent calculus mod-
ulo the associated rewrite system A→ B∧¬A, a provable
sequent without any cut-free proof? Indeed, let us try to
build a minimal example. We can prove that such a proof,
in its simplest form, is necessarily of the shape:

....
A,B∧¬A `

A ` ↑-l

....
` B∧¬A,A
` A

↑-r

` Cut(A)

where the rules labeled “↑ -r” and “↑ -l” allow to apply the
oriented axioms respectively on the right or on the left. In
order to validate this proof pattern, we have to check if it
is possible to close both sides of the proof tree, possibly
adding informations in the initial sequent.

First, we can trivially close the left part as follows:

A,B ` A Axiom

A,B,¬A ` ¬-l

A,B∧¬A ` ∧-l
.
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Second, to close the right part, we must have a proof in
the form:

` B,A
A ` A Axiom

` ¬A,A
¬-r

` B∧¬A,A
∧-r

.

To enforce the proof of ` B,A, we must add either A or B
to the left of the sequent, and we only have to consider B,
since we have cut around A. We obtain the critical proof:

A,B ` A Axiom

A,B,¬A ` ¬-l

B,A,B∧¬A ` ∧-l

B,A ` ↑-l

B ` B,A Axiom
B,A ` A Axiom

B ` ¬A,A
¬-r

B ` B∧¬A,A
∧-r

B ` A
↑-r

B ` Cut(A)
.

We can also easily show that there are no cut-free proof
of B `, simply because no inference rule is applicable to it
except Cut. If we want to have a cut-free proof, we need
to make B reducible by the congruence, hence the idea to
complete the initial system with a new rule which is a logi-
cal consequence of the current system. In our case, we must
therefore add the rule B→⊥.

With this new rule, we will show that there are no more
critical proofs and that therefore the sequent calculus mod-
ulo the proposition rewrite system{

A→ B∧¬A
B→⊥

has the cut-elimination property and the same expressive
power as the initial one.

The study of this question indeed reveals general prop-
erties of the sequent calculus modulo and our contributions
are the following:

• We provide an appropriate Noetherian ordering on
the proofs of the sequent calculus modulo a rewrite
system; This ordering allows us to set on the proof
space of sequent calculus modulo a structure of ab-
stract canonical system;

• We characterize the critical proofs in deduction mod-
ulo as simple cuts;

• By an appropriate correspondence between sequents
and rewrite systems, we establish a precise correspon-
dence between the limit of a completion process and a
cut free sequent calculus;

• We show the applicability of the general results, in
particular on sequent calculus modulo rewrite systems
involving quantifiers, therefore generalizing all previ-
ously known results;

As an important by-product of these results, we demonstrate
the expressive power of the abstract canonical systems.
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