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Abstract. Deduction Modulo Theory is a generic framework to describe
proofs in a theory better than using raw axioms. This is done by pre-
senting the theory through a congruence over propositions that is most
often defined by means of rules rewriting terms and propositions. It has
been shown that such representations of theories preserve good proper-
ties of axiom-free deductive systems, that they can lead to theoretical
proof-length speed-ups, and that they actually improve automated proof
search. In this paper, we are interested in transforming an axiomatic
theory into a rewriting system so that it can be used in Deduction Mod-
ulo Theory. We design several techniques to automatically orient axioms
into rewriting systems, some of them being complete, some being merely
heuristics. Using automated theorem provers featuring Deduction Mod-
ulo Theory, namely iProverModulo, Zipperposition and ArchSAT, we
perform experiments to compare these techniques. These experiments
confirm the practical interest of using rewriting rules instead of axioms.

Keywords: automated deduction, proof theory, theory reasoning, rewrit-
ing, refinements of resolution

1 Introduction

Proofs are rarely built without context: mathematical theorems are proved for in-
stance in set theory, or in arithmetic; program correctness may use pointer arith-
metic or the theories associated to the data structures of the program (chained
lists, arrays, etc.); theories can also model characteristics of encryption functions
to prove security properties. Some proving contexts can also be seen as theories.
For instance, the Sledgehammer tactic of Isabelle sends to automated provers
the goal to be proved with a number of related lemmas that can be used as
axioms, and that form therefore a specific theory in which the goal must be
proved. Therefore, it is essential to develop methods that are adapted to search
for proofs in theories. For instance, SMT provers provide efficient tools. Never-
theless, they are restricted to some particular theories, such as linear arithmetic
or arrays. We would like to have a generic and automated way of obtaining
efficient methods for a given theory, provided it is consistent. A naive idea is
to use an axiomatic presentation of the theory, but it is now folklore that this
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is not efficient enough. The theory should therefore be presented in a more ef-
fective manner. One solution is, starting from the axiomatic presentation, to
automatically design a deductive system that is adapted to the theory. Negri
and von Plato [30] turn variable-free axioms into non-logical deduction rules
that are added to a sequent calculus. Similarly, Ciabattoni, Galatos, and Terui
[15] transforms a large class of axioms into inference rules in sequent and hy-
persequent calculi. Deduction Modulo Theory, introduced by Dowek, Hardin,
and Kirchner [23], is a bit different: it presents the theory as computation, by
means of a rewriting system, and the inference rules of an existing deductive
system (natural deduction, sequent calculus, etc.) are applied modulo the con-
gruence associated with this rewriting system. Deduction Modulo Theory can
theoretically lead to unbounded proof-length speed-ups [7], and we have shown
[8] that presenting theories as rewriting systems improves indeed the search
for proofs in those theories. Deduction Modulo Theory is featured in at least
four automated theorem provers : iProverModulo [8, 10] (https://github.
com/gburel/iProverModulo), Zenon Modulo [17, 10] (https://github.com/
Deducteam/zenon_modulo), Zipperposition (https://github.com/sneeuwballen/
zipperposition) and ArchSAT (https://github.com/Gbury/archsat).

If one wants these presentations to behave well, they should have the follow-
ing proof-theoretical property: the cut rule must be admissible. Indeed, in the
usual setting, cut admissibility implies the consistency of the theory, the subfor-
mula property (to find a proof, one can restrict oneself to the subformulas of the
formula to be proved), the existence of proof normal forms, etc. Furthermore,
in Deduction Modulo Theory, this property is equivalent to the completeness of
the various derived proof-search methods [23, 4, 21, 5]. For all systems produced
by Negri and von Plato [30] and Ciabattoni et al. [15], because of restrictions on
the form of the theories, cut admissibility holds. However, in Deduction Mod-
ulo Theory, it depends on the considered rewriting system. We therefore would
like, given a consistent theory, a way to present it as a rewriting system such
that cut admissibility holds in Deduction Modulo Theory, and we would like
this process to be automated. This question has been tackled by various works.
A presentation as a rewriting system with cut admissibility was designed spe-
cially for particular theories, such as Peano arithmetic by Dowek and Werner
[25], simple type theory by Dowek, Hardin, and Kirchner [22], and Zermelo set
theory by Dowek and Miquel [24]. When we experimented with our integration
of a proof search method based on Deduction Modulo Theory into an existing
prover [8], we had to design such a rewriting system by hand for each theory
we considered, which led us to restrict ourselves to only five theories. Dowek
[20] designed a systematic way of transforming a consistent propositional the-
ory into such a rewriting system, using a model of the theory. Together with
Kirchner [2010], we gave a semi-algorithm that can handle any first-order the-
ory: first, it produces a rewriting system that corresponds to the theory; second,
it completes the rewriting system to ensure cut admissibility. It is the second
part that may not terminate. In [6], we show for how any first-order theory can
always be presented as a rewriting system with cut admissibility. This was done

https://github.com/gburel/iProverModulo
https://github.com/gburel/iProverModulo
https://github.com/Deducteam/zenon_modulo
https://github.com/Deducteam/zenon_modulo
https://github.com/sneeuwballen/zipperposition
https://github.com/sneeuwballen/zipperposition
https://github.com/Gbury/archsat
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by developing a characterization by Burel and Dowek [12] of an extension of the
resolution method based on Deduction Modulo Theory as a combination of the
set-of-support strategy of Wos, Robinson, and Carson [34] and of selection of
literals. In [9], we propose another approach by first saturating the set of axioms
w.r.t. the superposition calculus, and then obtaining a rewriting system from
the saturated set that is guaranteed to ensure cut admissibility.

Although these two methods are perfectly valid from a theoretical point of
view, they suffer from drawbacks that hinder their use in practice. The first
one produces many rewriting rules, so that its benefit w.r.t. using axioms could
be not so significant. The second one cannot always be employed, since the
saturation of the set of axioms may not terminate. We therefore designed sev-
eral methods to orient the axioms; some of them are based on these theoretical
works, some others are base on heuristics. We implemented these methods in
a tool called autotheo. We have performed an experiment to compare them,
using three provers implementing a resolution method based on Deduction Mod-
ulo Theory : iProverModulo, a prover combining resolution and instantiation-
generation; Zipperposition, a prover implementing the superposition calculus;
and ArchSAT, a SMT solver based on McSat. We could not used Zenon Modulo

because it does not handle polarized Deduction Modulo Theory, which is the
flavour of Deduction Modulo Theory that is output by autotheo.

In the two next sections, we briefly present Deduction Modulo Theory and
refinements of resolution. Section 4 describes how a theory can be presented as a
rewriting system, and why cut admissibility is implied by the consistency of the
theory, or by the saturation of the set of axioms. We then describe in Section 5
the different practical algorithms that can be used to perform this task, and
we perform an experiment to compare them. We conclude by discussing further
works.

2 Deduction Modulo Theory

We use standard definitions for terms, predicates, propositions (with connectives
¬,⇒,∧,∨ and quantifiers ∀,∃), sequents, substitutions, term rewriting rules and
term rewriting, as can be found in [1, 26] . The substitution of a variable x by a
term t in a term or a proposition A is denoted by {t/x}A, and more generally the
application of a substitution σ in a term or a proposition A by σA. A term t can

be narrowed into s using substitution σ at position p (t
p,σ
 s) if σt can be rewritten

into s using substitution σ at position p. A literal is an atomic proposition or
the negation of an atomic proposition. A proposition is in clausal form if it is the
universal quantification of a disjunction of literals ∀x1, . . . , xn. L1∨. . .∨Lp where
x1, . . . , xn are the free variables of L1, . . . , Lp. In the following, we will often omit
the quantifications, and we will identify propositions in clausal form with clauses
(i.e. set of literals) as if ∨ were associative, commutative and idempotent. The
symbol ut represents the empty clause. The polarity of a position in a proposition
can be defined as follows: the root is positive, and the polarity switches when
going under a ¬ or on the left of a ⇒.
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In Deduction Modulo Theory, term rewriting and narrowing is extended to
propositions by congruence on the proposition structure. In addition, there are
also proposition rewriting rules whose left-hand side is an atomic proposition and
whose right-hand side can be any proposition. Such rules can also be applied to
non-atomic propositions by congruence on the proposition structure. We call a
rewriting system the combination of a term rewriting system and a proposition
rewriting system. Given a rewriting system R, we denote by A−→

R
B the fact

that A is rewritten in one step into B, either by a term rewriting rule or by a
proposition rewriting rule, and by A 

R
B the fact that A is narrowed to B.

∗−→
R

is the reflexive transitive closure of −→
R

. Deduction Modulo Theory consists in

applying the inference rules of an existing proof system modulo such a rewriting
system. This leads for instance to the asymmetric sequent calculus modulo of
Dowek [19], some of whose rules are presented in Figure 1.

Example 1. Consider the rewriting rule A ⊆ B → ∀x. x ∈ A ⇒ x ∈ B. We can
build the following proof of the transitivity of the inclusion in the asymmetric
sequent calculus modulo this rule:

_−
x ∈ C − x ∈ C

_−
x ∈ B − x ∈ B⇒−

x ∈ B ⇒ x ∈ C, x ∈ B − x ∈ C
∀−

B ⊆ C, x ∈ B − x ∈ C
_−

x ∈ A − x ∈ A
⇒−

x ∈ A⇒ x ∈ B,B ⊆ C, x ∈ A − x ∈ C
∀−

A ⊆ B,B ⊆ C, x ∈ A − x ∈ C
−⇒

A ⊆ B,B ⊆ C − x ∈ A⇒ x ∈ C
−∀

A ⊆ B,B ⊆ C − A ⊆ C

Rewriting rules can be applied indifferently to the left- or the right-hand side
of a sequent. Consequently, they can be considered semantically as an equivalence
between their left- and right-hand sides. To be able to consider implications, a
polarized version of Deduction Modulo Theory was introduced by Dowek [18].
Proposition rewriting rules are tagged with a polarity + or −; they are then
called polarized rewriting rules. A proposition A is rewritten positively into a
proposition B (A−→+B) if it is rewritten by a positive rule at a positive position
or by a negative rule at a negative position. It is rewritten negatively (A−→−B)
if it is rewritten by a positive rule at a negative position or by a negative rule
at a positive position. Intuitively, a positive rule A→+ B (resp. a negative rule
B →− A) corresponds to an implication B ⇒ A. Term rewriting rules (but not

proposition rewriting rules) are considered as both positive and negative.
∗−→± is

the reflexive transitive closure of −→±. This gives the polarized sequent calculus
modulo, some of whose rules are presented in Figure 2.

Example 2. Consider the polarized rewriting system

A ⊆ B →− ∀x. x ∈ A⇒ x ∈ B
A ⊆ B →+ ¬diff (A,B) ∈ A
A ⊆ B →+ diff (A,B) ∈ B
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_
− A

∗−→
R

C
∗←−
R

B
Γ,A − B,∆

Γ,A − ∆ Γ − B,∆−
^

A
∗←−
R

C
∗−→
R

B
Γ − ∆

Γ,B − ∆ Γ − A,∆
⇒− C

∗−→
R

A⇒ B
Γ,C − ∆

Γ,A − B,∆
−⇒ C

∗−→
R

A⇒ B
Γ − C,∆

Γ, {t/x}A − ∆
∀− B

∗−→
R
∀x. A

Γ,B − ∆
Γ − A,∆

−∀
B
∗−→
R
∀x. A

x not free in Γ,∆Γ − B,∆

Fig. 1. Some inference rules of the Asymmetric Sequent Calculus Modulo R

_
− A

∗−→
R
−C + ∗←−

R
B

Γ,A − B,∆
Γ,A − ∆ Γ − B,∆−

^
A −

∗←−
R

C
∗−→
R

+B
Γ − ∆

Γ,B − ∆ Γ − A,∆
⇒− C

∗−→
R
−A⇒ B

Γ,C − ∆
Γ,A − ∆

−¬ B
∗−→
R

+¬A
Γ − B,∆

Γ, {t/x}A − ∆
∀− B

∗−→
R
−∀x. A

Γ,B − ∆
Γ − A,B,∆

−∵
C
∗−→
R

+A

C
∗−→
R

+BΓ − C,∆

Fig. 2. Some inference rules of the Polarized Sequent Calculus Modulo R

(diff can be seen as the Skolem symbol introduced by the CNF transformation
of the definition of the subset relation.) We can build the following proof of the
transitivity of the inclusion in the polarized sequent calculus modulo this system:

_−
diff (A,C) ∈ C − A ⊆ C

_−
diff (A,C) ∈ B − diff (A,C) ∈ B

⇒−
diff (A,C) ∈ B ⇒ diff (A,C) ∈ C, diff (A,C) ∈ B − A ⊆ C

∀−
B ⊆ C, diff (A,C) ∈ B − A ⊆ C

_−
diff (A,C)∈A−diff (A,C)∈A

⇒−
diff (A,C) ∈ A⇒ diff (A,C) ∈ B,B ⊆ C, diff (A,C) ∈ A − A ⊆ C

∀−
A ⊆ B,B ⊆ C, diff (A,C) ∈ A − A ⊆ C

−¬
A ⊆ B,B ⊆ C − A ⊆ C,A ⊆ C

−∵
A ⊆ B,B ⊆ C − A ⊆ C

To a rewriting system R corresponds a theory, which is the set of formulas
that can be proved in the sequent calculus modulo R. It was proved that this
theory can always be presented by a traditional set of axioms, which is then
called by [23] a compatible presentation. In this paper, we are concerned with
the converse direction: is it possible to present any axiomatic first-order theory by
a rewriting system? In [13, Corollary 25], we answered positively: it is possible to
transform any first-order theory into a rewriting system. However, this rewriting
system may not have all the good properties that ensure that deduction modulo
behaves well, in particular the admissibility of the cut rule.

The cut rule is admissible in the sequent calculus modulo R if, whenever a
sequent can be proved in it, then it can be proved without using the cut rule
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( −̂ in Figure 1 and 2). Abusing terminology, we say that a rewriting system R
admits cut if the cut rule is admissible in the sequent calculus modulo R. The
admissibility of the cut rule has a strong proof-theoretical as well as practical
importance: it involves that normal forms exist for proofs; it implies the consis-
tency of the theory associated to R; it is equivalent to the completeness of the
proof search procedures based on Deduction Modulo Theory R (such as ENAR
by Dowek et al. [23], extending the resolution method, and TaMed by Bonichon
and Hermant [4], extending the tableau method); etc. Cut admissibility can also
be seen as the completeness of the cut-free sequent calculus w.r.t. the sequent
calculus with cuts. In [13], to ensure the cut admissibility, we designed a pro-
cedure that completes the rewriting system. However, this procedure may not
terminate (and produces too many rules in practice). In this paper, we propose
another method to transform an axiomatic presentation of a theory into a cut-
admitting rewriting system, that works for any finitely presented and consistent
first-order theory.

3 Resolution Calculi

We briefly recall the resolution calculus and two refinements, namely the set-
of-support strategy and ordered resolution with selection, before presenting the
extension of resolution with Deduction Modulo Theory. A derivation in resolu-
tion [31] tries to refute a set of clauses by inferring new clauses by means of the
two following inference rules (where P and Q are atoms, whereas L and K are
literals), until the empty clause is derived.

P ∨ C ¬Q ∨D
Resolution σ = mgu(P,Q)

σ(C ∨D)

L ∨K ∨ CFactoring σ = mgu(L,K)
σ(L ∨ C)

3.1 Set-of-Support Strategy

The set-of-support strategy for resolution, introduced by Wos et al. [34], consists
in restricting the clauses on which resolution can be applied. The input set of
clauses is separated into a theory Γ and a set of support ∆. At least one of the
clauses on which resolution is applied must be in the set of support, and the
generated clause is put into the set of support. If the theory Γ is assumed to be
consistent, this strategy is complete: if Γ,∆ is a unsatisfiable set of clauses, the
empty clause can be derived from it using the set-of-support strategy. The set-
of-support strategy can therefore be seen as proving a formula ¬∆ in a theory Γ
without trying to find a contradiction in Γ because Γ is assumed to be consistent.

3.2 Ordered Resolution with Selection

Ordered resolution with selection [3] (ORS(�, S)) is another refinement of reso-
lution parametrized by an Noetherian ordering � on atoms which is stable under
substitution and total on ground atoms, and by a selection function S that asso-
ciates to each clause a subset of the negative literals of this clause. It consists in
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restricting the literals on which resolution can be applied: if S(C) is not empty,
then only the literals in S(C) can be used; otherwise, only the maximal literals
w.r.t. � can be used. We will therefore say that a literal is selected in a clause C
if it is in S(C) or if S(C) is empty and the literal is maximal in C. Ordered res-
olution with selection is refutationally complete whatever ordering or selection
function are used.

3.3 ([Ordered] Polarized) Resolution Modulo

An extension of resolution based on Deduction Modulo Theory, named Extended
Narrowing and Resolution (ENAR), was defined by Dowek et al. [23]. ENAR
is a family of resolution calculi, each parametrized by a rewriting system R.4

It consists in adding a new inference rule, called Extended Narrowing, which
produces the clauses obtained by narrowing a clause by R. Since narrowing a
clause with a proposition rewriting rule can produce a formula which is not in
clausal normal form, the latter has to be computed to find the generated clauses.
The Extended Narrowing rule is therefore:

C
Ext. Narr. C 

R
A, D ∈ C`(A)

D

where C`(A) is the set of clauses of the clausal normal form of A.
We say that ENAR for R is complete if, whenever − A can be proved in the

sequent calculus modulo R, the empty clause can be derived from C`(¬A) in
ENAR for R. Hermant [28] proved that the empty clause can be derived from
C`(¬A) in ENAR for R if and only if − A can be proved without cut in the
sequent calculus modulo R. This implies that ENAR for a rewriting system R
is complete if and only if the sequent calculus modulo R admits cut.

In ENAR, formulas have to be put in clausal normal form dynamically, which
may require fresh Skolem symbols each time. To avoid this, Dowek [21] intro-
duced the Polarized Resolution Modulo (PRM). As ENAR, this is a family of
resolution calculi parametrized by a rewriting system, but this system is assumed
to be polarized, and clausal, i.e., each negative rule is of the form P →− C, and
each positive rule is of the form P →+ ¬C, where C is in clausal form. In that
case, the Extended Narrowing rule becomes:

P ∨ C
Ext. Narr.− σ = mgu(P,Q), Q→− D ∈ R

σ(D ∨ C)

¬Q ∨D
Ext. Narr.+ σ = mgu(P,Q), P →+ ¬C ∈ R

σ(C ∨D)

Gao [27] proved that any rewriting system admitting cut can be transformed into
an equivalent polarized and clausal one, so that PRM can be applied whenever
ENAR can.
4 ENAR is originally parametrized by a rewriting system R and an equational the-

ory E , and the unification in the Resolution, Factoring and Extended Narrowing rules
is performed modulo the equational theory E . To keep it simple, we choose not to
consider equational theories in this paper.
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PRM can itself be restricted using orderings, as in Ordered Resolution. In
Orderered Polarized Resolution Modulo (OPRM(�), 5), the inference rules of
PRM can only be applied to literals that are maximal w.r.t. the ordering�. It has
been proved that completeness of OPRM(�) is equivalent to the completeness of
PRM (and therefore to the cut admissibility of the rewriting system), whatever
ordering is used. This means that if a rewriting system admits cut, it can be
used in OPRM(�) even if � is not compatible with the rewriting system, that
is, it orients some rules in the wrong direction. Note that completeness of OPRM
with selection of negative literals is still an open question.

3.4 Polarized Rewriting Rules and One-Way Clauses

To each polarized clausal rewriting rule can be associated a clause in which one
literal is selected. This clause is called a one-way clause by Dowek [21]. For
instance, to P →− C is associated ¬P ∨ C, and to P →+ ¬C is associated
P ∨C (the selected literals are underlined). Conversely, to a clause and a literal
occurrence in this clause can be associated a polarized clausal rewriting rule: to
P ∨C is associated P →+ ¬C, and to ¬P ∨C is associated P →− C. It is worth
remarking that applying Extended Narrowing on a clause C with a polarized
clausal rule R leads to the same clause as applying Resolution on C and the
one-way clause corresponding to R. Thus, polarized rewriting rules can be seen
as special clauses with the following properties:

– only the selected literal can be used to resolve a one-way clause;
– two one-way clauses cannot be resolved together.

The results of this paper exploit this isomorphism between polarized clausal
rewriting rules and one-way clauses.

4 Cut-Admitting Presentations of Theories

4.1 Simulating set of support

We suppose that the theory is presented by means of a set of clauses. If not, it
has to be transformed into clausal normal form using standard techniques.

Definition 1. Given a set of clauses Γ , we define the polarized rewriting system
RΓ consisting of, for each clause C in Γ and each literal L in C,

– if L = P is positive, a positive rewriting rule P →+ ¬∀x1, . . . , xn. L1 ∨ · · · ∨ Lm
where x1, . . . , xn are the free variables of C that are not free in P and
L1, . . . , Lm are the literals of C different from P ;

– if L = ¬P is negative, a negative rewriting rule P →− ∀x1, . . . , xn. L1 ∨ · · · ∨ Lm
where x1, . . . , xn are the free variables of C that are not free in P and
L1, . . . , Lm are the literals of C different from ¬P .
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Example 3. Let Γ be the set of clauses corresponding to the definition of the
inclusion:

¬A ⊆ B ∨ ¬(X ∈ A) ∨X ∈ B
A ⊆ B ∨ diff (A,B) ∈ A

A ⊆ B ∨ ¬(diff (A,B) ∈ B)

Then RΓ is A ⊆ B →− ∀x. ¬x ∈ A ∨ x ∈ B
X ∈ A→− ∀b. ¬A ⊆ b ∨X ∈ b
X ∈ B →+ ¬∀a. ¬a ⊆ B ∨X ∈ a
A ⊆ B →+ ¬diff (A,B) ∈ A

diff (A,B) ∈ A→+ ¬A ⊆ B
A ⊆ B →+ ¬¬diff (A,B) ∈ B

diff (A,B) ∈ B →− A ⊆ B

Remark 1. The number of rewriting rules in RΓ is equal to the number of literal
occurrences in Γ .

Using such a rewriting system, one can simulate the set-of-support strategy.
Hence, completeness holds as well as cut admissibility.

Theorem 1 ([6, Theorem 14]). The consistency of a finite set of clauses Γ
implies the admissibility of the cut rule in the polarized sequent calculus modulo
RΓ .

4.2 Cut admissibility through saturation

To reduce the number of rules, it is possible to associate a polarized rewriting
system to a set of clauses for ordered resolution with selection by considering as
left-hand sides only the literals that are selected in a clause. Thus, we would not
produce a rule for each literal but only for those that are in S(C) or that are
maximal if S(C) is empty.

Example 4. We consider the example of the inclusion again, with an ordering
such that literals with ⊆ are greater than literals with ∈. The resulting rewriting
system is reduced to

A ⊆ B →− ∀x. ¬x ∈ A ∨ x ∈ B
A ⊆ B →+ ¬diff (A,B) ∈ A
A ⊆ B →+ ¬¬diff (A,B) ∈ B

However, ordered resolution with selection is not compatible with the set-of-
support strategy, in the sense that their combination jeopardizes completeness.
Nevertheless, a sufficient condition to ensure the completeness is the saturation
of the set of clauses used as complement of the set of support (i.e. the theory):
the clauses that can be inferred from it must either be in it or be redundant (i.e.
they must be semantically implied by smaller clauses).
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Theorem 2 ([9, Theorem 7]). The saturation of a finite set of clauses Γ
w.r.t. ORS(�, S) implies the admissibility of the cut rule in the polarized sequent
calculus modulo the rewrite system RΓ restricted to rules whose left-hand side
is selected (or maximal if none are selected) w.r.t. S and �.

Since saturation implies satisfiability of the set of clauses (if it does not con-
tain the empty clause), which is undecidable, saturating a set of clauses may
not terminate. However, it can be semi-automated. First-order automated the-
orem provers like SPASS by Weidenbach, Dimova, Fietzke, Kumar, Suda, and
Wischnewski [33] actually work by trying to saturate the input set of clauses,
unless the empty clause is derived. Running SPASS on the example above (with
precedence ⊆ > ∈ > diff and ⊆ and ∈ dominant predicates), the saturation
generates two new clauses

¬X ∈ A ∨ diff (A,B) ∈ A ∨X ∈ B
¬diff (A,B) ∈ B ∨ ¬X ∈ A ∨X ∈ B

The following rewriting system therefore admits cuts:

A ⊆ B →− ∀x. ¬x ∈ A ∨ x ∈ B
A ⊆ B →+ ¬diff (A,B) ∈ A
A ⊆ B →+ ¬¬diff (A,B) ∈ B
X ∈ A→− ∀x. diff (A,B) ∈ A ∨ x ∈ B

diff (A,B) ∈ B →− ∀x. ¬X ∈ A ∨X ∈ B

5 Experimental Comparison of Orientation Techniques

We have compared several techniques that transform a set of axioms into a
rewriting system. Two of them, being based on Theorems 1 and 2, are therefore
proved to be complete, in the sense that the resulting rewriting system admits
cut. The other ones are merely heuristics.

5.1 Description of the different techniques

We compared six different ways of transforming a set of axioms into a rewriting
system.

ClausalAll: The set of axioms is put in clausal normal form (using the prover
E of Schultz [32]), and it is transformed into a rewriting system as described in
Definition 1.

Sat: The set of axioms is saturated using E, and it is then transformed into a
rewriting system restricted to the selected literals, as in Theorem 2. Of course,
the saturation may not terminate, so this technique does not always succeed.
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Equiv(ClausalAll): Depending on their shape, axioms are transformed into rewrit-
ing rules:

Axioms give rewrite rules
∀x. t = u t→ u provided FV (u) ⊆ FV (t)
∀x. P ⇒ A P →− ∀y. C for all C ∈ C`(A), with y = FV (C) \ FV (P )
∀x. A⇒ P P →+ ¬∀y. C for all C ∈ C`(¬A), with y = FV (C) \ FV (P )
∀x. P ⇔ A
∀x. A⇔ P the same as those of ∀x. P ⇒ A and ∀x. A⇒ P
∀x. ¬P ⇒ A P →+ ¬∀y. C for all C ∈ C`(A), with y = FV (C) \ FV (P )
∀x. A⇒ ¬P P →− ∀y. C for all C ∈ C`(¬A), with y = FV (C) \ FV (P )
∀x. ¬P ⇔ A
∀x. A⇔ ¬P the same as those of ∀x. ¬P ⇒ A and ∀x. A⇒ ¬P
∀x. P P →+ ¬⊥
∀x. ¬P P →− ⊥
∀x. A ∧B the same as those of ∀x. A and ∀x. B

where P is atomic, and FV (A) is the set of free variables of A. Axioms not of
these shapes are transformed using the ClausalAll technique above.

Equiv(Id): This is the same technique as Equiv(ClausallAll), except that axioms
that are not of a recognized shape are not transformed into rewrite rules at all
and are used as normal formulas.

Presat(ClausalAll): Since saturation may not terminate, we can decide to stop
it after a certain amount of clauses have been generated. In this technique,
we saturate the set of axioms using E until 100 clauses have been processed.
These processed clauses are transformed into a rewriting system restricted to
the selected literals as in Sat. The unprocessed clauses generated during the
saturation are transformed using the ClausalAll technique.

Presat(Id): This is the same technique as Presat(ClausallAll), except that un-
processed clauses are not transformed into rewrite rules and are used as normal
clauses.

5.2 autotheo

We have implemented a tool called autotheo that automatically transforms the
set of axioms of a problem into a rewriting system using one of these techniques.
This tool takes as input a problem in TPTP format. It outputs a new problem in
which part of the axioms have been replaced by rewriting rules. This output can
either be in the Zipperposition format5, which is also understood by ArchSAT;
or in the TPTP format with the following convention: if a clause appears with
the axiom role, then it should be understood as the rewriting rule corresponding

5 https://github.com/sneeuwballen/zipperposition#native-syntax

https://github.com/sneeuwballen/zipperposition#native-syntax
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to the one-way clause where the first literal is selected. This is the convention
used by iProverModulo with the flag --modulo true.

On the input file corresponding to Example 1:

fof(inclusion_def, axiom,

! [X,Y] : (subseteq(A,B) <=> (! [Z] : (in(Z, A) => in(Z,B))))).

fof(h1, hypothesis, subseteq(a,b)).

fof(h2, hypothesis, subseteq(b,c)).

fof(g, conjecture, subseteq(a,c)).

with the Equiv(ClausalAll) heuristic, autotheo produces the following files in
Zipperposition format:

val iota : type.

val a : iota.

val b : iota.

val c : iota.

val zf_in : iota -> iota -> prop.

val sk1_esk1_2 : iota -> iota -> iota.

val subseteq : iota -> iota -> prop.

rewrite[name c_0_11_0] forall (X2 X3 : iota). (subseteq (X3) (X2) =>

(forall (X1 : iota). (zf_in (X1) (X2)) || (~ (zf_in (X1) (X3))))).

rewrite[name c_0_10_0] forall (X1 X2 : iota). (~ (subseteq (X2) (X1)) =>

(zf_in (sk1_esk1_2 (X1) (X2)) (X2))).

rewrite[name c_0_9_0] forall (X1 X2 : iota). (~ (subseteq (X2) (X1)) =>

(~ (zf_in (sk1_esk1_2 (X1) (X2)) (X1)))).

goal[name g] subseteq (a) (c).

assert[name h2] subseteq (b) (c).

assert[name h1] subseteq (a) (b).

and in TPTP format for iProverModulo:

cnf(c_0_11_0,axiom,~subseteq(X3,X2)|in(X1,X2)|~in(X1,X3)).

cnf(c_0_10_0,axiom,subseteq(X2,X1)|in(sk1_esk1_2(X1,X2),X2)).

cnf(c_0_9_0,axiom,subseteq(X2,X1)|~in(sk1_esk1_2(X1,X2),X1)).

cnf(c_0_12,negated_conjecture,~subseteq(a,c)).

cnf(c_0_13,hypothesis,subseteq(b,c)).

cnf(c_0_14,hypothesis,subseteq(a,b)).

autotheo consists of ∼2000 lines of OCaml code. It depends on the prover E
to put formulas in clausal normal form and to saturate set of clauses. autotheo
is distributed as part of iProverModulo, even if it can be compiled and used
independently from it. It is available on GitHub (https://github.com/gburel/
iProverModulo/tree/master/autotheo).

5.3 Experiment

We compared the orientation techniques on all first-order problems of the TPTP
library v.7.1.0, i.e. 16079 problems using cnf and fof syntax. For each problem,

https://github.com/gburel/iProverModulo/tree/master/autotheo
https://github.com/gburel/iProverModulo/tree/master/autotheo
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Table 1. Number of problems solved by the prover with the given orientation heuristic.
(In parenthesis, number of problems solved by the prover uniquely with the given
heuristic.) For “Any of the above”, number of problems solved by the prover by at
least one of the orientation techniques. (In parenthesis, number of problems solved by
the prover by at least one of the orientation techniques but not without rewriting.)

ArchSAT iProverModulo Zipperposition

Equiv(ClausalAll) 1674 (14) 3684 (83) 1162 (22)
ClausalAll 1480 (27) 3879 (49) 1040 (31)
Equiv(Id) 1542 (22) 3911 (76) 3054 (198)
Presat(Id) 1707 (80) 3915 (266) 1857 (47)

Presat(ClausalAll) 1653 (65) 3604 (27) 1233 (23)
Any of the above 2443 (663) 5002 (1162) 3305 (564)
Without rewriting 1473 (340) 3849 (357) 5678 (2316)

and for each tested heuristic, we first transform the set of axioms of the problem
into a rewriting system using autotheo, with a timeout of 10s. We then try
to prove the resulting problem with ArchSAT (v0.1), iProverModulo (v0.7+0.3)
and Zipperposition (v1.2), with a timeout of 180s and a memory limit of 1GB.
Experiments were performed on virtualized Intel Core Processor (Haswell, no TSX)
2.30 GHz CPUs, on Inria’s OpenStack platform Gulliver.

The results are summarized in Table 1. We do not report the results for the
Sat heuristic because it succeeds at orienting a problem only for a few cases in
the given time. We can remark that ArchSAT always proves more problems when
it is given a problem with axioms oriented as rewriting rules, compared to using
the axiom as is. This may be explained by the way SMT solvers work: one needs
to find the good instantiations for first-order axioms, whereas rewriting rules
are applied just by matching. For iProverModulo, the benefit of using rewriting
rules depends of the chosen heuristic. However, the number problems solved by
at least one of the heuristic is much larger than without rewriting rules. The
results are different for Zipperposition, where using axioms turns out to be
better. Only the Equiv(Id) strategy works relatively well, but this may be due
to the fact that on problems where there are no formula on which the Equiv
heuristic can be applied, this strategy is equivalent to using the original problem
file. This is the case in particular for problems already in clausal normal form,
where only clauses with a single literal can be turned into a rewriting rules.
We need to investigate further why using rewriting rules in Zipperposition

does not work so well. It seems that for some of the problems, it is due to the
fact that Zipperposition assumes the rewriting system to be confluent, and
therefore only computes one normal form. Another explanation is that rewriting
was only added lately in Zipperposition, and perhaps it does not combine well
enough with the rest of the proving process, in particular the fact that first-order
predicates are transformed into Boolean equations.

Looking at the problems solved uniquely by a given heuristic, we can note
that each heuristic has some interest. This suggests to use of the schedule that
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Table 2. Number of problems without equality symbol solved by the prover with or
without orienting axioms into rewriting rules. (In parenthesis, number of problems
solved by the prover uniquely with or without.)

ArchSAT iProverModulo Zipperposition

With at least one heuristic 272 (90) 896 (46) 734 (35)
Without rewriting 150 (7) 850 (0) 656 (43)

runs the prover successively on each orientation, or to run several instances of
the prover for each orientation in parallel.

It can be interesting to compare how the results vary depending on the do-
main of the TPTP library. Table 3 in the appendix details the results on each
domain, distinguishing problems in clausal normal form (-) and general first-
order formulas (+). For instance, using rewriting is always better (even using
Zipperposition) in the Semantic Web (SWB) and in the Syntactic (SYN and
SYO) domains. Putting aside Zipperposition, orienting theories leads to a
large gain in the General Algebra (ALG), Analysis (ANA), Boolean Algebra
(BOO), Category Theory (CAT), Commonsense Reasoning (CSR), Geometry
(GEO), Groups (GRP), Henkin Models (HEN), Hardware Verification (HWV),
Lattices (LAT), Logic Calculi (LCL), Number Theory (NUM), and Rings (RNG)
domains. This suggests that such domains contain theories that can be nicely
oriented. On the Set Theory (SET, SEU, and SEV) and Software Verification
(SWV and WSW) domains, iProverModulo is much better with oriented theo-
ries than without rewriting rules, but this result cannot be observed in the two
other provers. This is a bit striking, since Deduction Modulo Theory is believed
to work well on problems in set theory; in particular, it is used in Zenon Modulo
to prove proof obligations stemming from industrial problems using Atelier B, a
tool founded on a set theory (namely B Set Theory) [14].

If one restricts oneself to problems without equality, results are even better,
even for Zipperposition, as shown in Table 2. In particular, each problem
solved by iProverModulo without rewriting can also be proved by using at least
one of the orientation heuristics. The difference of results without and with the
equality predicate may indicate that the interaction between the rewriting rules
and the equality predicate needs to be better understood, in particular in the
context of the superposition calculus.

6 Conclusion and Further Work

In this paper, we have presented several methods to turn axioms into rewriting
systems usable in Deduction Modulo Theory. For some of them, it is proved
that the resulting proof calculus is complete, whereas some other are heuris-
tics depending on the shape of the formulas. We have presented the results of
experiments comparing these techniques. For those, we used three provers im-
plementing Deduction Modulo Theory, namely ArchSAT, iProverModulo, and



From Axioms to Rewriting Rules 15

Zipperposition. Whereas the results are somehow mediocre for Zipperposition,
they are much better for ArchSAT and iProverModulo, and they indicate that
automatically orienting theories to use them in these provers is actually feasible.
No orientation techniques outperform the others, which suggests to use them
concurrently when solving a problem. This work therefore constitutes an im-
portant step towards the automatic production of provers adapted to a given
theory.

Equality. The orientation techniques presented in this paper are primarily de-
signed for first-order logic without equality. However, theories are often presented
in first-order logic with equality. Adding the axioms for equality (reflexivity,
symmetry, transitivity and congruence w.r.t. the function symbols and the pred-
icates) and transforming them as presented in this paper is a theoretical way
to obtain presentations of such theories. However, it does not take into account
the specificity of equality, and the way it can be integrated into a deduction
system thanks to Deduction Modulo Theory. A first improvement is to put the
equational axioms into an equational theory modulo which rewriting and unifi-
cation is performed (see footnote page 7). Nevertheless, existing provers perform
unification and rewriting modulo only for specific equational theories, such as
commutativity of a function symbol. Only such axioms should therefore be pre-
sented this way. The other equational axioms should be transformed into term
rewriting rules. It remains to be proved that using term rewriting rules for equa-
tional axioms and proposition rewriting rules as obtained as in this paper for
the other axioms is complete. We conjecture that it is the case as long as the
term rewriting system is confluent and commutes with the proposition rewriting
system. The confluence of the term rewriting system could be ensured by the
standard completion of Knuth and Bendix [29].

The next step is to design proof-search procedures based on deduction modulo
for first-order logic with equality. A good candidate would be an extension of the
superposition calculus [2] with an Extended Narrowing rule, but we currently do
not know if cut admissibility is enough to prove its completeness. In particular,
we do not know how to take this assumption into account in a completeness
proof based on saturation, the kind of proof usually used for the completeness
of superposition.

Combination with other kinds of presentations. In this paper, we have shown
how to present any first-order theories as rewriting systems. However, for some
specific theories, rewriting is probably not the best way to present them. For
instance, to search for proofs in linear arithmetic, it is probably more efficient to
use a combination with the simplex method than to use a rewriting system for
linear arithmetic. Therefore, we would like to investigate how it could be possible
to combine Deduction Modulo Theory with other ways to present theories. A
first lead would be to study canonized rewriting [16], where (ground) rewriting
is combined with Shostak theories to get SMT solvers modulo AC. Then, we
would need a way to recognize theories during proof search to trigger the most
appropriate method [11].
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Table 3. Number of problems solved by the prover with the given orientation heuristic,
by domains.
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