
Regaining Cut Admissibility in Deduction Modulo
using Abstract Completion

Guillaume Burel a,c,∗ Claude Kirchner b,c

aNancy-Université, Université Henri Poincaré
bINRIA Bordeaux - Sud-Ouest

cLORIA, Équipe Pareo, Bâtiment B, Campus Scientifique, 54506 Vandœuvre-lès-Nancy Cedex 1

Abstract

Deduction modulo is a way to combine computation and deduction in proofs, by applying
the inference rules of a deductive system (e.g. natural deduction or sequent calculus) modulo
some congruence that we assume here to be presented by a set of rewrite rules. Using deduction
modulo is equivalent to proving in a theory corresponding to the rewrite rules, and leads to
proofs that are often shorter and more readable. However, cuts may be not admissible anymore.

We define a new system, the unfolding sequent calculus, and prove its equivalence with the
sequent calculus modulo, especially w.r.t. cut-free proofs. It permits to show that it is even
undecidable to know if cuts can be eliminated in the sequent calculus modulo a given rewrite
system. Then, to recover the cut admissibility, we propose a procedure to complete the rewrite
system such that the sequent calculus modulo the resulting system admits cuts. This is done by
generalizing the Knuth-Bendix completion in a non-trivial way, using the framework of abstract
canonical systems.

These results enlighten the entanglement between computation and deduction, and the power
of abstract completion procedures. They also provide an effective way to obtain systems ad-
mitting cuts, therefore extending the applicability of deduction modulo in automated theorem
proving.

Key words: Automated deduction, rewriting, Knuth-Bendix completion, critical proofs, cut
admissibility, deduction modulo, proof ordering

Preprint submitted to Information and Computation 2 October 2009

1. Introduction

Proof assistants like Coq, PVS or Isabelle-HOL are now well mastered systems both
from the conceptual and implementation points of view. They allow for the development
of large and even very large proofs like the one of the four-color theorem [1]. They allow
also for a broad use of these techniques, making computer-aided proof development an
approach now in use at the industrial level, for instance for making the formal proof of
security issues of java card [2, 3].

This important activity in the use of current proof assistants enlightens the crucial lack
of computing power easily combinable with the deductive capabilities of such systems.
If the complementarity and interaction between computation and deduction is identified
since at least Henri Poincaré, its formalization as deduction modulo [4] is an appropriate
way to present first-order logic as well as any logic in general.

Deduction modulo should therefore be at the heart of proof assistants and proof search
methods, either implicitly or explicitly [see for instance 4–7] and getting a deep under-
standing of its logical behavior is of prime interest either for theoretical or practical
purposes.

In deduction modulo, computations are modeled by a congruence relation between
terms and between propositions. The logical deductions are done modulo this congru-
ence that is represented by a rewrite relation over first-order terms and propositions.
This permits to construct proofs that are often more readable, because the really deduc-
tive steps appear clearly, and also shorter, as was shown by Burel [8]. A first interesting
question is to know which theories can be represented by such a congruence. It turns
out, as we show in this paper, that any finitely presented first-order theory can be trans-
formed into such a rewrite relation, as far as one is only concerned with classical logic.
Nevertheless, the additional expressiveness capabilities added by the congruence entails
that the Hauptsatz, i.e. the fact that cuts are not needed to build proofs, is no longer
true. This can be seen in particular from an example derived from Crabbé’s proof of the
non-normalization of Zermelo’s theory [9] (see for instance [4] and Footnote 3 below).
And indeed the gap is important as we are proving in this paper that the admissibility
of the cut rule is undecidable when one works modulo.

But cut elimination is fundamental for several related reasons: first, it implies the
consistency of the logic, and in the case of deduction modulo the consistency of the
theory associated with the rewrite relation. Second, it entails the subformula property 2 ,
so that the search space is, in a sense, limited. The tableau method is based on this fact,
and for instance TaMed [7, 10], a tableau method based on deduction modulo, is shown
to be complete only for cut-free systems. Third, it has been shown by Hermant [11] that
the proof search method for deduction modulo ENAR [4]—which generalizes resolution

∗ Corresponding author. Current address : Max Planck Institut für Informatik, Campus E1 4, 66123

Saarbrücken, Germany. Phone number: +49 681 9325 220. Fax number: +49 681 9325 999.
Email addresses: guillaume.burel@ens-lyon.org (Guillaume Burel), claude.kirchner@inria.fr

(Claude Kirchner).
URLs: http://www.mpi-inf.mpg.de/~burel/ (Guillaume Burel), http://www.loria.fr/~ckirchne/

(Claude Kirchner).
1 LORIA is the UMR 7503 shared by CNRS–INPL–INRIA–Nancy2–UHP.
2 In the case of deduction modulo, the intuitive notion of subformula must take the considered rewrite
relation into account.

2

and narrowing—is equivalent to the cut-free fragment of deduction modulo, i.e. a sequent
has a cut-free proof in deduction modulo if and only if ENAR can find a proof. ENAR
is therefore complete if and only if the cut rule is admissible. This is also the case in the
more recently introduced Polarized Resolution Modulo [12].

So on the one hand, we like to have a powerful congruence but this may be at the
price of losing cut admissibility. How can we get both? It has been shown by Dowek
[13] that cut admissibility is equivalent to the confluence of the rewrite system, provided
only first-order terms are rewritten. In case the term rewrite system we are considering
is not confluent, we can apply standard (a.k.a. Knuth-Bendix [14]) completion to get
an equivalent term rewrite system which is confluent, and that way, we regain the cut
admissibility. It is however no longer true when propositions are also rewritten, and
the cut admissibility is in that case a stronger notion than confluence. Dowek wanted
therefore to build a generalized completion procedure whose input is a rewrite system
over first-order terms and atomic propositions and computing a rewrite system such
that the associated sequent calculus modulo admits cut. He proposed such a completion
procedure for the quantifier free case [15], based on the construction of a model for the
theory associated with the rewrite system.

To solve this question, including unlimited use of quantifiers, we use here a quite differ-
ent approach based on the notion of abstract canonical system and inference introduced
by Dershowitz and Kirchner [16], Bonacina and Dershowitz [17]. This abstract framework
is based on a proof ordering whose goal is to apprehend the notion of proof quality from
which the notions of canonicity, completeness and redundancy follow up. It is shown to
be well adapted to existing completion procedures such as ground completion [18] and
standard (a.k.a. Knuth-Bendix [14]) completion [19].

To present the general idea of our approach, let us consider the simple example of
Crabbé’s axiom [9] A ⇔ B ∧ ¬A 3 . Can we find, for the sequent calculus modulo the
associated rewrite system A→ B ∧ ¬A, a provable sequent without any cut-free proof?
Indeed, let us try to build a minimal example. We will show in Proposition 39 that such
a proof, in its simplest form, is necessarily of the shape:

....
A,B ∧ ¬A `

A ` ↑-l

....
` B ∧ ¬A,A
` A ↑-r

` Cut(A)

where the rules labeled “↑-r” and “↑-l” allow to unfold the oriented axioms respectively
on the right or on the left. In order to validate this proof pattern, we have to check if
it is possible to close both sides of the proof tree, possibly adding informations in the
initial sequent.

First, we can trivially close the left part as follows:

A,B ` A Axiom

A,B,¬A ` ¬-l

A,B ∧ ¬A ` ∧-l
.

3 In Crabbé’s manuscript, A represents rs ∈ rs and B rs ∈ s where rs is {x ∈ s : x 6∈ x}. Then, there is
a proof of rs 6∈ s in Zermelo’s set theory that is not normalizing.

3

Second, to close the right part, we must have a proof in the form:

` B,A
A ` A Axiom

` ¬A,A ¬-r

` B ∧ ¬A,A ∧-r
.

To enforce the proof of ` B,A, we must add either A or B to the left of the sequent, and
we only have to consider B, since we have cut around A. We obtain the critical proof:

A,B ` A Axiom

A,B,¬A ` ¬-l

B,A,B ∧ ¬A ` ∧-l

B,A ` ↑-l

B ` B,A Axiom
B,A ` A Axiom

B ` ¬A,A ¬-r

B ` B ∧ ¬A,A ∧-r

B ` A ↑-r

B ` Cut(A)
.

We can also easily show that there are no cut-free proof of B `, simply because no
inference rule is applicable to it except Cut. If we want to have a cut-free proof, we need
to make B reducible by the congruence, hence the idea to complete the initial system
with a new rule which is a logical consequence of the current system. In our case, we
must therefore add the rule B → ⊥.

With this new rule, we will show that there are no more critical proofs and that
therefore the sequent calculus modulo the proposition rewrite systemA→ B ∧ ¬A

B → ⊥

admits the cut rule and has the same expressive power as the initial one.
The study of this question indeed reveals general properties of the sequent calculus

modulo and our contributions are the following:
– We define several variants of the sequent calculus modulo more adapted to prove the

results of the paper (Section 2.2): the unfolding sequent calculus allows only atomic
propositions to be rewritten, step by step; in addition, the polarized unfolding sequent
calculus separates which rules can be applied to a proposition on the left and on the
right of a sequent; both variants behave the same way, especially w.r.t. cut-free proofs,
as the asymmetric sequent calculus modulo of Dowek [13], which in turn is equivalent
to the original version of the sequent calculus modulo by Dowek et al. [4] when the
rewrite system is confluent;

– We prove, using a semantical argument, that it is undecidable to know if the unfold-
ing sequent calculus associated with a given proposition rewrite system admits cuts
(Theorem 15);

– We show how to transform a finite set of axioms into a finite rewrite system, such that
the theory induced by the set of axioms is the same as the one proved by the classical
sequent calculus modulo the rewrite system (Section 4);

– We provide an appropriate Noetherian ordering on the proofs of the unfolding sequent
calculus; This ordering allows us to set on the proof space of unfolding sequent calcu-
lus a structure of abstract canonical system (Theorem 37); We characterize the critical
proofs in deduction modulo as simple cuts (Proposition 39); We establish a precise
correspondence between the limit of a completion process and a cut-free sequent cal-
culus (Theorem 41), therefore bypassing the undecidability of the cut admissibility in

4

the same way as standard completion circumvents the undecidability of the confluence
of a rewrite system;

– We show the applicability of the general results, in particular on sequent calculus mod-
ulo rewrite systems involving quantifiers, therefore generalizing all previously known
results such as the ones of Dowek [15];

As an important by-product of these results, we demonstrate the expressive power of
abstract canonical systems (ACS for short).

The next section presents basic notions on rewriting and introduces the variants of se-
quent calculi modulo that are used in the paper, proving their equivalence, in particular
concerning cut admissibility. In Section 3, we show the undecidability of the cut admis-
sibility in deduction modulo. The rest of the paper is therefore dedicated to ways how
to circumvent this. Section 4 describes an algorithm which transforms finitely presented
first-order theories into rewrite systems such that the sequent calculus modulo proves
the theory. It exhibits three important properties of the algorithm (Properties 16, 17
and 19) that are enough to define the completion procedure detailed in Section 5. This
procedure is based on the framework of the ACS, which is recalled in Section 5.1. The
unfolding sequent calculus is shown to be an instance of this framework (Section 5.2).
This allows us in Section 5.3 to characterize the critical proofs of deduction modulo and
to set-up the completion process as the appropriate (and indeed non-trivial) instance of
the abstract completion process. We conclude after presenting in more details Crabbé’s
example as well as several examples involving quantifiers.

This paper is a profoundly revised and extended version of the paper presented at
LFCS’07 [20] and it includes detailed proofs, examples and motivations.

2. Deduction modulo

2.1. Rewritings

We define here how propositions are rewritten in deduction modulo.
Bases on rewriting can be found in [21]. We present here briefly what we need for this

paper to be self-contained, mainly to introduce notations. We denote by T (Σ, V) the set
of terms built from a signature Σ and a set of variables V . An atomic proposition is given
by a predicate symbol A of arity n and by n terms t1, . . . , tn ∈ T (Σ, V). It is denoted
A(t1, . . . , tn). Propositions can be built using the following grammar 4 :

P != A | ¬P | P ∧ P | P ∨ P | P ⇒ P | ∀x. P | ∃x. P

where A ranges over atomic propositions and x over variables. P ⇔ Q will be used
as a syntactic sugar for (P ⇒ Q) ∧ (Q⇒ P), as well as

∧
Γ for P1 ∧ . . . ∧ Pn;

∨
Γ for

P1 ∨ . . . ∨ Pn and ¬Γ for ¬P1, . . . ,¬Pn if Γ = P1, . . . , Pn. Free variables of a proposition
and substitutions are defined as usual. The replacement of a variable x by a term t in
a proposition P is denoted by {t/x}P . A position in a term or a proposition t is a path
in the tree representing t. The subterm or subproposition t|p of t at position p is the
term or proposition represented by the subtree of t whose root is the last node of p. The
replacement in t of the subterm t|p by s is denoted by t[s]p.

4 !
= is used for definitions.

5

A term rewrite rule is the pair of terms l, r such that all free variables of r appear in
l. It is denoted l→ r. A term rewrite system is a set of term rewrite rules.

A term s can be rewritten to a term t by a term rewrite rule l→ r if there exists some
substitution σ such that σl = s and σr = t. This is extended to all terms, and then to
all propositions by congruence.

A proposition rewrite rule is the pair of an atomic proposition A and a proposition P ,
such that all free variables of P appear in A. It is denoted A→ P . A proposition rewrite
system is a set of proposition rewrite rules.

An atomic proposition A can be rewritten to a proposition P by a proposition rewrite
rule B → Q if there exists some substitution σ such that σB = A and σQ = P . This
is extended to all propositions by congruence. It should be noted that the proposition
rewrite relation should be seen, at least at first approximation, as an equivalence between
propositions, and not as an implication. (We will see that proving using A → P is the
same as proving with the extra assumption A⇔ P .)

A rewrite system will be the combination of a term rewrite system and a proposition
rewrite system. In the following, the term rewrite system used in addition to all the
proposition rewrite systems we will consider is fixed. It is supposed to be terminating
and confluent and is denoted RT (Σ,V).

We denote by P −→
R
Q the fact that P can be rewritten to Q in the rewrite system

R in one step. R may be omitted if it is clear from the context. +−→
R

(resp. ∗−→
R

) is the

transitive (resp. reflexive transitive) closure of this rewrite relation.
The subformula relation � is the least transitive relation such that:

– P � Pi (i = 1, 2) if P = P1 ∧ P2, P = P1 ∨ P2 or P = ¬P1;
– P � {t/x}Q if P = ∀x. Q or P = ∃x. Q;
– P � Q if P −→

RT (Σ,V)

Q

for all terms t, variables x and propositions P,Q, P1, P2. It is well-founded: the lexico-
graphic combination of the comparison of the number of connectors and quantifiers in the
propositions and the relation −→

RT (Σ,V)

contains �: if P � Q, then either P contains more

connectors and quantifier than Q (RT (Σ,V) rewrites only terms, so it cannot add connec-

tors or quantifiers), or as much and in that case P +−→
RT (Σ,V)

Q. As we know that RT (Σ,V)

terminates, the lexicographic combination is well founded. Note that this is not the sub-
formula relation that we are talking about in Footnote 2: for the subformula property
to hold we need to also include proposition rewriting, in which case the wellfoundedness
may be lost even for terminating rewrite systems (for instance for A(c)→ ∃x. A(x)).

2.2. Sequent Calculi Modulo

Sequent calculi modulo can be seen as extensions of the sequent calculus of Gentzen
[22]. We will use the denominations of Gallier [23]. There exist several variations of
sequent calculi modulo, depending on whether rewrite steps are explicit or not, or whether
they are applied to atomic propositions only or not. We propose here two variants, the
unfolding sequent calculus and the polarized unfolding sequent calculus. We link them
with other variants defined by Dowek [13, 15].

6

A sequent is a pair of multisets of propositions Γ,∆. It is denoted by Γ ` ∆. The sets
of all sequents is denoted S. For a sequent Γ ` ∆, if x1, . . . , xn are the free variables of
Γ,∆, we denote P(Γ ` ∆) the proposition ∀x1, . . . , xn. (

∧
Γ⇒

∨
∆).

In Fig. 1 we present the inference rules of the unfolding sequent calculus, which is an
extension of the system G4 of Kleene [24] with unfolding rules that apply a rewrite rule
to an atomic proposition. Proofs are trees labeled by sequents built using these rules, and
where all leaves are Axioms. The root sequent is called the conclusion. In the following, a
double horizontal bar will mean several applications of an inference rule. A proof is said
to be built in the proposition rewrite system R if all ↑-l and ↑-r steps use only rules that
appear in R ∪RT (Σ,V).

Identity Group:

Γ, P ` P,∆ Axiom(P)
Γ, P ` ∆ Γ ` P,∆

Γ ` ∆
Cut(P)

Logical Rules:
Γ ` P,∆

Γ,¬P ` ∆ ¬-l
Γ, P ` ∆
Γ ` ¬P,∆ ¬-r

Γ, P,Q ` ∆
Γ, P ∧Q ` ∆ ∧-l

Γ ` P,∆ Γ ` Q,∆
Γ ` P ∧Q,∆ ∧-r

Γ, P ` ∆ Γ, Q ` ∆
Γ, P ∨Q ` ∆ ∨-l

Γ ` P,Q,∆
Γ ` P ∨Q,∆ ∨-r

Γ, Q ` ∆ Γ,` P,∆
Γ, P ⇒ Q ` ∆ ⇒ -l

Γ, P ` Q,∆
Γ ` P ⇒ Q,∆

⇒ -r

Γ,∀x. P, {t/x}P ` ∆
Γ,∀x. P ` ∆ ∀-l

Γ ` {y/x}P,∆
Γ ` ∀x. P,∆ ∀-r

Γ, {y/x}P ` ∆
Γ,∃x. P ` ∆ ∃-l

Γ ` ∃x. P, {t/x}P,∆
Γ ` ∃x. P,∆ ∃-r

In ∀-l and ∃-r, t ∈ T (Σ, V); in ∃-l and ∀-r, y is not free in Γ,∆.

Unfolding Rules:
A−→
{r}

P , A atomic:

Γ, A, P ` ∆
Γ, A ` ∆

↑-l(r)
Γ ` A,P,∆

Γ ` A,∆ ↑-r(r)

Fig. 1. Unfolding Sequent Calculus

Cut(P) permits essentially to extend the proof search space with the proposition P .
Logical Rules decompose some proposition which is called principal. Unfolding Rules,
that do not appear in Gentzen’s sequent calculus, introduce proposition rewriting into the
proof system. They are parametrized by a rewrite rule. Note that only atomic propositions
are rewritten, in one step. It can also be remarked that the Unfolding Rules contain an
implicit contraction. This is needed to prove that contractions are admissible in the Cut-

7

free Unfolding Sequent Calculus (see Lemma 5 below), even when the rewrite system is
confluent, as shown by proving A modulo the rule A→ A⇒ B.
Definition 1 (Cut admissibility) A proposition rewrite system R is said to admit Cut
if for all sequents s ∈ S, s has a proof in R if and only if s has a proof in R without
using Cut.
It is well-known (Gentzen’s Hauptsatz [22], or more accurately [13, Proposition 8] because
of RT (Σ,V)) that ∅ admits Cut.

The unfolding sequent calculus is slightly different from the asymmetric sequent cal-
culus modulo of Dowek [13], which consists in applying identity and logical rules modulo
the rewrite system. For instance, it contains the following inference rules

Γ, P ` Q,∆ Axiom P
∗−→R

∗←−Q
Γ, Q ` ∆ Γ ` P,∆

Γ, R ` ∆ ⇒ -l R
∗−→P⇒Q

.

The asymmetric sequent calculus modulo also contains explicit contraction and weak-
ening inference rules. Unfolding sequent calculus is to the asymmetric sequent calculus
modulo what natural deduction with folding/unfolding rules is to natural deduction
modulo (see [25]). We will show that they are equivalent, in particular w.r.t. Cut.

From a logical point of view, deduction modulo is not problematic, because proving
in a rewrite system R is the same as proving using some set of first-order axioms, which
is then called compatible [see 4, Proposition 1.8]. In particular, a compatible axiom for
the rewrite rule A → P is the proposition ∀x1, . . . , xn. A ⇔ P where x1, . . . , xn are the
free variables of A. To be able to do the same with implications instead of equivalences,
Dowek [12, 15] introduced the polarized sequent calculus modulo. In this, rewrite rules
are distinguished by a (positive or negative) polarity written on the arrow of the rule.
A polarity is also defined for the positions of propositions: the root is positive, and we
switch polarity under ¬ and at the left of ⇒. A proposition is positively rewritten if it
is rewritten by a positive rule at a positive position, or by a negative rule at a negative
position. A proposition is negatively rewritten if it is rewritten by a negative rule at
a positive position, or by a positive rule at a negative position. The polarized sequent
calculus is similar to the asymmetric calculus modulo, but propositions on the right of
a sequent can only be positively rewritten, and propositions on the left only negatively.
Term rewrite rules can be indifferently applied to the left or the right. We will denote by
PRR the set of all polarized rewrite rules.

If we try to do the same with the unfolding sequent calculus, we simply have to restrain
↑-l to negative rules, and ↑-r to positive rules. We obtain that way what we call the
polarized unfolding sequent calculus. The set of proof of the polarized unfolding sequent
calculus is denoted by PUSC. We show now that it is equivalent to the polarized sequent
calculus modulo.

First, we show that weakening and contraction are admissible in the polarized unfolding
sequent calculus.
Lemma 2 (Weakening Lemma) For all proposition rewrite system R, if there exist
a proof of Γ ` ∆ in R, then for all propositions P there exists proofs of Γ, P ` ∆ and
Γ ` P,∆ in R of the same size.

PROOF. By induction on the proof, P can be propagated in the first proof until Axioms,
which accept side propositions. 2

8

Lemma 3 (Kleene Lemma [11, Lemme 3.3]) If a sequent, containing the non-
atomic proposition P , has a proof (resp. Cut-free proof) in R, then it has a proof (resp.
Cut-free proof) in R whose first rule is a logical rule with principal proposition P .

PROOF. This is slightly more general than Hermant [11], Lemme 3.3, because we also
consider ∀-l and ∃-r. But, for instance, if there is a proof Γ,∀x. P ` ∆, by weakening
there is a proof of the same size of Γ,∀x. P, {t/x}P ` ∆. The lemma can be proved by
simple induction on the size of the proof. 2

Corollary 4 For all sequents Γ ` ∆, the sequent ` P(Γ ` ∆) has a Cut-free proof in R
iff the sequent Γ ` ∆ has one.
Note 1 It should be remarked that all inference rules r but ∀-l and ∃-r (even ↑-l and ↑-r)
can be permuted from above, in the sense that if there is an application of r above some
other inference rule r’ that do not decompose a principal proposition into the principal
proposition of r, then we can build a valid proof by permuting the inference rules, applying
therefore r’ above r. This can also be proved by induction on the proof.
Lemma 5 (Contraction Lemma) For all proposition rewrite system R, the two fol-
lowing statements hold:
– There exist a proof of Γ, P ` ∆ in R if and only if there exists a proof of Γ, P, P ` ∆

in R.
– There exist a proof of Γ ` P,∆ in R if and only if there exists a proof of Γ ` P, P,∆

in R.

PROOF. One direction is a direct corollary of the Weakening Lemma.
The other one is a consequence of Kleene’s Lemma, and can be proved by lexicographic

induction on the structure of the proposition P and the size of the proof of Γ, P, P ` ∆:
In the case of an atomic proposition A: suppose there exists a proof of Γ, A,A ` ∆. If

the principal proposition of the last inference rule is not one of the A, then by we can just
apply the induction hypothesis to the subproof. If the last inference rule is Axiom, we can
prune one of the A in it. The resulting proof has the same size. If the last inference rule is
↑-l for some rewrite rule A→− P , then we have a strictly smaller proof of Γ, A,A, P ` ∆
to which we can apply the induction hypothesis to get a proof of Γ, A, P ` ∆. Apply ↑-l
to this proof gives a proof of Γ, A ` ∆.

In the case of ∨: suppose there exists a proof of Γ, P∨Q,P∨Q ` ∆. By Kleene’s Lemma
there exist proofs of Γ, P, P ∨Q ` ∆ and Γ, Q, P ∨Q ` ∆. We can apply Kleene Lemma
twice again to get proofs of Γ, P, P ` ∆; Γ, Q, P ` ∆; Γ, P,Q ` ∆ and Γ, Q,Q ` ∆. By
induction hypothesis, we have proofs of Γ, P ` ∆ and Γ, Q ` ∆, and therefore a proof of
Γ, P ∨Q ` ∆.

In the case of ∃: suppose there exists a proof of Γ,∃x. Q, ∃x. Q ` ∆. By applying
Kleene’s Lemma twice there exists a proof of Γ, {y/x}Q, {y′/x}Q ` ∆ where y and y′

are not free in Γ,∆. Then, we can replace y′ by y in this proof to get a valid proof of
Γ, {y/x}Q, {y/x}Q ` ∆. By induction hypothesis, there exists a proof of Γ, {y/x}Q ` ∆
where y not free in Γ and ∆. Therefore we have a proof of Γ,∃x. Q ` ∆.

In the case of ∀: we proceed by induction on the proof of Γ,∀x. Q,∀x. Q ` ∆. If
no ∀x. Q is the principal proposition of the last rule, this is a simple induction. If it is
principal, the direct subproof proves Γ, {t/x}Q,∀x. Q, ∀x. Q ` ∆ for some t ∈ T (Σ, V).

9

By induction hypothesis, we have a proof of Γ, {t/x}Q,∀x. Q ` ∆, and therefore a proof
of Γ,∀x. Q ` ∆. 2

Note 2 The premises Γ and conclusions ∆ of sequent Γ ` ∆ can therefore be considered
as sets.
Lemma 6 (Rewrite Lemma) For all proposition rewrite systems R1 and R2, the two
following statements hold:
– If P ∗−→

R1∪RT (Σ,V)

Q negatively and there exists a proof of Γ, Q ` ∆ in R2, then there

exists a proof of Γ, P ` ∆ in R1 ∪R2.
– If P ∗−→

R1∪RT (Σ,V)

Q positively and there exists a proof of Γ ` Q,∆ in R2, then there exists

a proof of Γ ` P,∆ in R1 ∪R2.

PROOF. We proceed by induction on the length of the rewrite derivation
P

∗−→
R1∪RT (Σ,V)

Q. We therefore only have to show it for a single step of rewriting.

If P −→
R1∪RT (Σ,V)

Q negatively, then there exists some context C[] , an atomic proposition

A and a propositionQ′ such that P = C[A] andQ = C[Q′] and A −→
R1∪RT (Σ,V)

Q′ negatively

if the position of the hole in the context is positive or positively in the other case. We
proceed by induction on the context. Suppose there exists a proof of Γ, C[Q′] ` ∆. We
can transform it into a proof of Γ, C[A] ` ∆ by applying the same inference rules, except
when these rules are directly applied to Q′, because it is replaced by A. In this case, if the
hole in C[] is at a positive position, then A is on the left of the sequent, and we can apply
↑-l (the rewrite rule that rewrites A into Q′ is indeed negative in that case). In the other
case, it is on the right and we can apply ↑-r (the rewrite rule is indeed positive). We can
then carry on the proof. The resulting proof uses then rewrite rules in R1∪R2∪RT (Σ,V),
and is thus in R1 ∪R2.

The second sentence is dual. 2

Note that in all the previous lemmata, we do not introduce extra Cuts in the resulting
proofs. This allows to prove the equivalence with the polarized sequent calculus modulo,
also w.r.t. Cut-free proofs.
Proposition 7 (Equivalence) The polarized unfolding sequent calculus is equivalent
to the polarized sequent calculus modulo of Dowek [15], that is, a sequent is provable
(resp. provable without Cut) in the polarized unfolding sequent calculus in a proposition
rewrite system R iff it is provable (resp. provable without Cut) in the polarized sequent
calculus modulo the rewrite system R ∪RT (Σ,V).

PROOF. It is quite clear that the inference rules of the polarized unfolding sequent
calculus can be derived in Dowek’s one, by integrating each unfolding step into the
inference rules above through the modulo.

Conversely, using Lemma 6, we can extract the rewriting from the logical rules. For
instance, if we have a proof whose root is

Γ, Q ` ∆ Γ ` P,∆
Γ, O ` ∆ ⇒ -l O

∗−→P⇒Q negatively
,

10

we use the premises to get a proof Γ, P ⇒ Q ` ∆ without implicit rewriting, and we use
Lemma 6 to get the proof of Γ, O ` ∆.

Then, Lemmata 2 and 5 proves that weakening and contraction are admissible.
Of course, as we have seen, both system are also equivalent regarding Cut-free proofs,

since we did not need to add any Cut in the proofs of the previous lemmata. 2

Corollary 8 The unfolding sequent calculus is equivalent (in the same sense) to the
asymmetric sequent calculus modulo.

PROOF. A non-polarized rewrite system R can easily be seen as a polarized rewrite
system R± with for each rule A → P in R a positive rule A →+ P and a negative rule
A →− P . The unfolding sequent calculus for R (resp. the asymmetric sequent calculus
modulo for R) is then the polarized unfolding sequent calculus for R± (resp. the polarized
sequent calculus modulo for R±).

This translation also permits to know that every lemma above holds also for the
unfolding sequent calculus. 2

Given a polarized rewrite system R, we can transform it into a non-polarized rewrite
system R∓:
– a positive rule A→+ P is translated into A→ A ∨ P ;
– a negative rule A→− P is translated into A→ A ∧ P .
The polarized unfolding sequent calculus for R is then equivalent to the unfolding sequent
calculus for R∓:
Proposition 9 A sequent is provable (resp. provable without Cut) in the polarized un-
folding sequent calculus in a polarized proposition rewrite system R iff it is provable (resp.
provable without Cut) in the unfolding sequent calculus in the rewrite system R∓.

PROOF. By induction on the structure of the proofs. Only the cases with unfolding
rules are interesting.

If a proof ends with
Γ, A, P ` ∆

Γ, A ` ∆
↑-l(B →− Q)

then by induction hypothesis we have a proof of Γ, A, P ` ∆ in the unfolding sequent
calculus. Using Lemma 2, and applying ∧-l we obtain a proof of Γ, A,A ∧ P ` ∆. We
therefore can build the derivation

Γ, A,A, P ` ∆
Γ, A,A ∧ P ` ∆ ∧-l

Γ, A ` ∆
↑-l(B → B ∧Q)

in the unfolding sequent calculus. This is dual for the polarized ↑-r.
Conversely, there are two cases: either the rewrite rule is applied on the side corre-

sponding to the polarity of the polarized rule that produced it, or on the other side. In
the first case, suppose for instance that we have the proof

π....
Γ ` A ∨ P,A,∆

Γ ` A,∆ ↑-r(B → B ∨Q)
.

11

By induction hypothesis on π we have a proof of Γ ` A∨P,A,∆ in the polarized unfolding
sequent calculus. By Lemmata 3 and 5, we have a proof of Γ ` P,A,∆. Because A −→

B→+Q
P

positively, we can apply ↑-r to get a proof of Γ ` A,∆. In the second case, suppose for
instance that we have the proof

π....
Γ, A,A ∨ P ` ∆

Γ, A ` ∆
↑-l(B → B ∨Q)

.

By induction hypothesis on π we have a proof of Γ, A,A∨P ` ∆ in the polarized unfolding
sequent calculus. By Lemmata 3 and 5, we have a proof of Γ, A ` ∆. 2

Corollary 10 The polarized sequent calculus modulo and the asymmetric sequent calcu-
lus modulo are equivalent.
This somehow answers a question of Dowek [15], end of Section 4 who asked which
polarized rewrite system can be represented as a non-polarized rewrite system. We can
also prove the equivalence for intuitionistic logic, with the same translation. To be able
to do this, one needs a multi-conclusion sequent calculus for intuitionistic logic, see [26]
(the translation is in the appendix of the full version of that paper, available at http://
hal.inria.fr/inria-00395934). However, the non-polarized system is not necessarily
confluent, and therefore, we may not have the equivalence with the original sequent
calculus modulo of Dowek et al. [4], at least concerning Cut admissibility. Nevertheless,
this should not be a problem. Indeed, the proving procedures based on deduction modulo,
TaMed and ENAR, are actually complete for the cut-free part of the asymmetric sequent
calculus modulo, regardless of the confluence of the rewrite system.

3. Undecidability of the cut admissibility

We present here some properties of the unfolding sequent calculus, which are slight
generalizations of Hermant [11, 27]. In particular, we introduce the notion of semanti-
cally sound rewrite systems, which implies Cut admissibility, and we prove that the Cut
admissibility is not decidable.

We need the following definitions, whose motivations can be found in Hermant [27]:
Definition 11 (Properties of a theory) Given a rewrite system R, a theory Γ:
– is complete iff for all propositions P , either Γ, P ` or Γ ` P has a Cut-free proof in
R;

– is consistent iff there is no Cut-free proof of Γ ` in R;
– admits Henkin witnesses iff for all propositions Q with one free variable x, there is a

constant c of the language such that
· if Γ,∃x. Q ` has no Cut-free proof in R, then {c/x}Q is in Γ;
· if Γ ` ∀x. Q has no Cut-free proof in R, then ¬{c/x}Q is in Γ.
Models in deduction modulo are standard first-order models, except that they are

compatible with the rewrite system:
Definition 12 (Model for a rewrite system) A Boolean model M is a model for
the rewrite system R if for all rewrite rules A → P in R, A and P are interpreted the
same way in M.

12

We introduce the new notion of semantically sound rewrite system:
Definition 13 (Semantical soundness) A rewrite system R is said semantically
sound if every complete, consistent theory Γ which admits Henkin witnesses has a model
M for R.
Proposition 14 (Semantical soundness implies Cut admissibility) If R is se-
mantically sound, then R admits Cut.

PROOF. As proved by Hermant [27], Lemma 3, if Γ ` ∆ has a proof in R, then any
model M for R interprets P(Γ ` ∆) as true.

It remains to be proved that if any model M for R interprets P(Γ ` ∆) as true then
Γ ` ∆ has a Cut-free proof in R.

If ¬P(Γ ` ∆) is consistent, then using Hermant [27], Section 6.1, we can complete
it into a consistent, complete theory Θ which admits Henkin witnesses. By hypothesis
(semantical soundness), Θ has a modelM for R. Furthermore, by construction of Θ this
model is also a model for ¬P(Γ ` ∆). Consequently, this model for R does not interpret
P(Γ ` ∆) as true, which contradicts our hypothesis.

Hence ¬P(Γ ` ∆) is not consistent, by definition there is a Cut-free proof of ¬P(Γ `
∆) ` in R, and using Lemma 3 there is a Cut-free proof of Γ ` ∆. 2

This proposition permits to prove the main theorem of this first section:
Theorem 15 (Undecidability of the Cut Admissibility) The problem

Input: A propositional rewrite system R
Decide if R admits Cut.

is undecidable.

PROOF. We reduce to the validity problem in first-order logic (given a proposition,
decide whether it is valid in all first-order models). We recall the reader that this problem
is undecidable in the empty theory when the language contains at least a binary predicate.

Let P be a first-order proposition.
Let A be a nullary predicate not appearing in P . Consider the propositional rewrite

system
R = {A→ A⇒ P } .

It is always possible to build a proof of ` P in R:

A,P ` P Axiom
A ` A,P Axiom

A,A⇒ P ` P ⇒ -l

A ` P ↑-l

A ` P,A, P Axiom

` A⇒ P,A, P
⇒ -r

` A,P ↑-r

` P Cut(A)

Then we show that P is valid if and only if R admits Cut:
If P is valid, then R is semantically sound: given a complete, consistent theory Γ which

admits Henkin witnesses, letM be the model defined as follows: Its domain is the set of
closed terms. An atomic predicate B is interpreted as true byM iff Γ ` B has a Cut-free
proof in R. Because the theory is complete and because it admits Henkin witnesses, this
permits to define the model for all propositions [see 27, Lemma 8]. This process is well-
defined by consistency. Then ` A has a Cut-free proof (the right part of the proof above

13

where P is pruned). By weakening Γ ` A has a Cut-free proof in R, and A is therefore
interpreted as true by M. As P is valid, it is interpreted as true in particular in M.
Consequently, the interpretation of A⇒ P is also true. Thus, the left-hand side and the
right-hand side of the rules in R have the same interpretation in M, which is therefore
a model for R. Consequently, R is semantically sound and by Proposition 14 it admits
Cut.

Conversely, if R admits Cut, because of the existence of the proof above, there exists
a Cut-free proof of ` P in R. Because P does not contain A, no unfolding rules can be
applied in this proof (simple proof by induction). Therefore, there exists a proof of ` P
in Gentzen’s sequent calculus, and as it is complete for first-order logic, P is valid. 2

Note 3 This proof is deeply inspired by the proof of Hermant [11], Chapter 8 that there
exists terminating and confluent rewrite systems that admits Cut, but in which some
proof is not normalizing. Cut admissibility remains undecidable even when considering
only terminating and confluent rewrite system, by using the system r ∈ r → ∀y. (∀x. y ∈
x⇒ r ∈ x)⇒ y ∈ r ⇒ P in the proof above.
Note 4 In fact, this problem seems to be Π0

2-complete in the arithmetical hierarchy (see
[28, Chapter C.1] for an introduction on the arithmetical hierarchy), i.e. it is not even
semi-decidable. This could be proved by merging the proof above with techniques used in
[29] to prove in particular that the confluence of a rewrite system is Π0

2-complete.

4. Construction of a rewrite system compatible with a theory

We now present an algorithm transforming a finitely presented first-order theory into a
polarized rewrite system such that, proving in the theory is equivalent to proving modulo
the rewrite system. We first define the good properties that such an algorithm should
have, and then provide an example of such an algorithm.

4.1. Desired properties

We want to build an algorithm that translates a finite presentation of a first-order
theory into a rewrite system. This algorithm may be seen as a function from sequents to
polarized rewrite systems: Rew : S → PRR.

First, we require that each polarized rewrite rule can be produced by the algorithm.
This is not really useful here, but we need this for the completion procedure in the next
section.
Property 16 For all polarized rewrite rule r there exists a sequent s such that Rew(s) =
{r}.

Then we want that the theory is compatible with the rewrite system produced from
it. Moreover, we would like that at least the axioms in the presentation of the theory are
provable without Cut in the produced rewrite system.
Property 17 (Strong Compatibility) For all sequents Γ ` ∆, Rew(Γ ` ∆) and
P(Γ ` ∆) are strongly compatible:
(a) for all positive rewrite rule A →+ P in Rew(Γ ` ∆), there exists a proof of
P(Γ ` ∆) ` P ⇒ A in ∅ (i.e. using only term rewrite rules of RT (Σ,V));

14

(b) for all negative rewrite rule A →− P in Rew(Γ ` ∆), there exists a proof of
P(Γ ` ∆) ` A⇒ P in ∅ (i.e. using only term rewrite rules of RT (Σ,V));

(c) there exists a Cut-free proof of ` P(Γ ` ∆) in Rew(Γ ` ∆).
Property 17 is a stronger notion than the compatibility in the sense of Definition 1.4 of

Dowek et al. [4]: it imposes Cut-free proof in (c) and it does not care about term rewrite
rules. Property 17(a) and 17(b) implies the following:
Proposition 18 For all sequents Γ ` ∆, for all rewrite systems R, if there is a proof
of a sequent Γ′ ` ∆′ in the rewrite system Rew(Γ ` ∆) ∪ R, there is a proof of P(Γ `
∆),Γ′ ` ∆′ in R.

PROOF. We prove it by induction on the proof of Γ′ ` ∆′. The only interesting case is
when the last inference rule is an unfolding rule. If it is ↑-l with a rule in Rew(Γ ` ∆)\R,
we have

Γ′, A, P ` ∆′

Γ′, A ` ∆′
↑-l(B →− Q)

with B →− Q in Rew(Γ ` ∆) and A = σB, P = σQ for some substitution σ. By
induction hypothesis, there exists a proof π of P(Γ ` ∆),Γ′, A, P ` ∆′ in ∅. By Property
17(b), there is a proof $ of P(Γ ` ∆) ` B ⇒ Q in ∅. We can apply σ to $ to get a valid
proof $′ of P(Γ ` ∆) ` A⇒ P .

We can therefore build the proof
π....

P(Γ ` ∆),Γ′, A, P ` ∆′ P(Γ ` ∆),Γ′, A ` A,∆′ Axiom

P(Γ ` ∆),Γ′, A,A⇒ P ` ∆′ ⇒ -l
$′

P(Γ ` ∆),Γ′, A ` ∆′
Cut(A⇒ P)

which is indeed in R.
The case of ↑-r is very similar. 2

The next property will also be useful for the completion procedure. It essentially says
that Rew should be modular, i.e. for all sequents s, s1, s2, if Rew(s) = Rew(s1)∪Rew(s2)
then having a cut-free proof of s1 and s2 implies having a cut-free proof of s, whatever
the rewrite system used in the modulo.
Property 19 For all proposition rewrite system R, for all sequents s, if for all rewrite
rules r ∈ Rew(s) there exists a sequent sr which is provable without Cut in R and such
that r ∈ Rew(sr), then s has a Cut-free proof in R.

4.2. An Algorithm . . .

We now present one possible algorithm having the required properties. It is quite simple
to describe: it consists in applying rules of the sequent calculus to the sequent until an
atomic proposition appears in the sequent. This atomic proposition will be the left-hand
side of the polarized rewrite rule, the polarity of the rule will depend on the side of the
sequent in which A appears, and the right-hand side will contain all other propositions.

15

More precisely, the algorithm can be described by the non-deterministic steps below.
To decompose universally quantified propositions on the left and existentially quantified
propositions on the right only once, we mark that they have already been decomposed
by underlining them.
Step 1. Choose a sequent. Push all negated propositions on the other side of the sequent.

For instance, A,¬B ` ¬C,¬¬D becomes A,C ` B,D. If the new Γ contains only
underlined propositions (or no proposition), go to step 2. If the new ∆ contains
only underlined propositions (or no proposition), go to step 3. Else, go to either
Step 2 or Step 3.

Step 2. Decompose the last proposition iteratively:

P1, . . . , Pn ` Q1, . . . , Qm becomes P1, . . . , Pn,¬Q1, . . . ,¬Qm−1 ` Qm

P1, . . . , Pn ` Q1 ∧Q2 ” P1, . . . , Pn ` Q1 ; P1, . . . , Pn ` Q2

P1, . . . , Pn ` Q1 ∨Q2 ” P1, . . . , Pn,¬Q1 ` Q2

P1, . . . , Pn ` Q1 ⇒ Q2 ” P1, . . . , Pn, Q1 ` Q2

P1, . . . , Pn ` ∀x. Q ” P1, . . . , Pn ` {y/x}Q

where y does not appear in P1, . . . , Pn

P1, . . . , Pn ` ∃x. Q ” P1, . . . , Pn,¬∃x. Q ` {t/x}Q

where t can be any term

P1, . . . , Pn ` A ” A→+ ∃x1, . . . , xp. (P1 ∧ · · · ∧ Pn)
(A atomic, and the xi are the free variables appearing in P1, . . . , Pn but not in
A)
for P1, . . . , Pn ` ¬Q, return to Step 1

Step 3. Decompose the first proposition iteratively, dually from step 2. For instance,

P1 ⇒ P2 ` Q1, . . . , Qm becomes P2 ` Q1, . . . , Qm ; ¬P1 ` Q1, . . . , Qm

∀x. P ` Q1, . . . , Qm ” {t/x}P ` ¬∀x. P ,Q1, . . . , Qm

where t can be any term

A ` Q1, . . . , Qm ” A→− ∀x1, . . . , xp. (Q1 ∨ · · · ∨Qm)
(A atomic, and the xi are the free variables appearing in Q1, . . . , Qm but not in
A)
for ¬P ` Q1, . . . , Qm, return to Step 1.

In practice, we can for instance choose x for t, so that no substitution is needed in those
cases. All other choices are also correct. Of course, at the end, the underlines are removed.

This algorithm clearly terminates, because each times a step 2 or 3 begins, either a
rewrite rule is generated, or a proposition is decomposed into subformulæ, so that the
number of connectors in the non-underlined propositions in a sequent different from ¬
strictly diminishes. Of course, we do not pretend that this algorithm is the most optimized
for our purpose.

We denote Rew(Γ ` ∆) the function returning the rewrite system obtained by applying
the algorithm to

{
Γ ` ∆

}
.

To get an intuition on this algorithm, it may be seen as the attempt to build a Cut-free

16

proof of a sequent, adding rewrite rules to close the branches where an atomic proposition
appears.

4.3. . . . with the Good Properties

We first prove Property 17 using three lemmata.
Lemma 20 If the sequent Γ ` ∆ is transformed to the set of sequents {Γ′ ` ∆′} ∪S′ by
the algorithm described in Section 4.2, then the sequent

P(Γ ` ∆) ` P(Γ′ ` ∆′)

can be proved (without proposition rewrite rules).

PROOF. By case analysis on the transformation. For instance, in Step 2, P1, . . . , Pn `
Q1 ∧ Q2 is transformed into P1, . . . , Pn ` Q1;P1, . . . , Pn ` Q2. Suppose x1, . . . , xn

(resp. y1, . . . , ym) are the free variables of P1, . . . , Pn, Q1 ∧ Q2 (resp.P1, . . . , Pn, Q1).
{y1, . . . , ym} ⊆ {x1, . . . , xn} so that we can suppose yi = xi for i ∈ {1, . . . ,m}. We
have the following proof (only relevant propositions are written, and the substitutions
are forgotten in the above part of the proof):

Q1, Q2 ` Q1
Axiom

Q1 ∧Q2 ` Q1
∧-l ∧

i Pi `
∧

i Pi
Axiom∧

i Pi ⇒ (Q1 ∧Q2),
∧

i Pi ` Q1
⇒ -l∧

i Pi ⇒ (Q1 ∧Q2) `
∧

i Pi ⇒ Q1

⇒ -r

∀x1, . . . , xn. (
∧

i Pi ⇒ (Q1 ∧Q2)) ` (
∧

i Pi ⇒ Q1) ∀-l

∀x1, . . . , xn. (
∧

i Pi ⇒ (Q1 ∧Q2)) ` ∀y1, . . . , ym. (
∧

i Pi ⇒ Q1) ∀-r

It can be checked that the side conditions of the rules ∃-l and ∀-r are verified. 2

Lemma 21 For all propositions A,P1, . . . , Pn, if x1, . . . , xp are the free variables of
P1, . . . , Pn not appearing freely in A, then the sequents

P(P1, . . . , Pn ` A) ` (∃x1, . . . , xp.
∧
i

Pi)⇒ A

P(A ` P1, . . . , Pn) ` A⇒ ∀x1, . . . , xp.
∨
i

Pi

can be proved (without proposition rewrite rules).

PROOF. Suppose y1, . . . , ym are the free variables of A,P1, . . . , Pn. Note that
{x1, . . . , xp} ⊆ {y1, . . . , ym} so that we can suppose yi = xi for i ∈ {1, . . . , p}. We
can construct the following proof (only relevant propositions are written):

17

A ` A Axiom ∧
i Pi `

∧
i Pi

Axiom

(
∧

i Pi ⇒ A),
∧

i Pi ` A
⇒ -l

∀y1, . . . , ym. (
∧

i Pi ⇒ A),
∧

i Pi ` A
∀-l

∀y1, . . . , ym. (
∧

i Pi ⇒ A),∃x1, . . . , xp.
∧

i Pi ` A
∃-l

∀y1, . . . , ym. (
∧

i Pi ⇒ A) ` (∃x1, . . . , xp.
∧

i Pi)⇒ A
⇒ -r

The proof of the other sequent is dual. 2

Note that although the proofs given by Lemmata 20 and 21 are Cut-free, we will need
Cuts to link them and prove Properties 17(a) and 17(b).
Lemma 22 For all atomic propositions A and propositions P1, . . . , Pn, if x1, . . . , xp are
the free variables of P1, . . . , Pn not appearing freely in A, then we can prove without Cut
the sequent

` P(P1, . . . , Pn ` A)
in the rewrite system consisting of the rule A →+ ∃x1, . . . , xp. (P1 ∧ · · · ∧ Pn), and the
sequent

` P(A ` P1, . . . , Pn)
in the rewrite system consisting of the rule A→− ∀x1, . . . , xp. (P1 ∨ · · · ∨ Pn).

PROOF. Suppose y1, . . . , ym are the free variables of A,P1, . . . , Pn. Note that
{x1, . . . , xp} ⊆ {y1, . . . , ym} so that we can suppose yi = xi for i ∈ {1, . . . , p}. Because
x1, . . . , xp do not appear in A, {ti/yi}A = {ti/yi : i > p}A. Only relevant propositions
are written:

P1 ` P1
Axiom · · · Pn ` Pn

Axiom

P1, . . . , Pn ` A,P1 ∧ · · · ∧ Pn
∧-r∧

i Pi ` A,P1 ∧ · · · ∧ Pn
∧-l∧

i Pi ` A,∃x1, . . . , xp. (P1 ∧ · · · ∧ Pn) ∃-r∧
i Pi ` A

↑-r

`
∧

i Pi ⇒ A
⇒ -r

` ∀y1, . . . , ym. (
∧

i Pi ⇒ A) ∀-r

2

We can prove Property 19 using the following lemma:
Lemma 23 For all proposition rewrite system R, if the set of sequents S is transformed
into the set of sequents S′ by the algorithm of Section 4.2 without the production of a
rewrite rule, then all sequents of S have a (resp. Cut-free) proof in R iff all sequents of
S′ have a (resp. Cut-free) proof in R.

PROOF. By case analysis on the transformation. The “if” part is the application of
logical rules, whereas the “only if” part is a consequence of Lemma 3.

For instance, P1, . . . , Pn ` ∀x. Q is transformed into P1, . . . , Pn ` {y/x}Q where y
does not appear in P1, . . . , Pn. If P1, . . . , Pn ` {y/x}Q has a proof in R, then because y
does not appear in P1, . . . , Pn, P1, . . . , Pn ` ∀x. Q has a proof in R by application of ∀-r.

18

Conversely, if P1, . . . , Pn ` ∀x. Q has a proof in R, then by Lemma 3 there exists a proof
of P1, . . . , Pn ` {y/x}Q in R for y not free in P1, . . . , Pn. Therefore P1, . . . , Pn ` {y/x}Q
has a proof in R.

In the preceding paragraph, if proofs are supposed Cut-free, then the resulting proofs
have the same property. 2

We can now prove the main result of this subsection:
Proposition 24 The Rew function defined in Section 4.2 has the Properties 16, 17 and
19.

PROOF. We proceed by induction on the execution of the algorithm of Section 4.2.
Property 16 directly follows from the fact that Rew(A ` P) = {A →− P} and

Rew(P ` A) = {A→+ P}.
For Properties 17(a) and 17(b), Lemma 21 permits to prove the properties at the

end of the algorithm, when sequents are transformed into rules. Lemma 20 permits to
prove the inductive case: suppose Γ ` ∆ is transformed into {Γ′ ` ∆′} ∪ · · · . Suppose
P(Γ′ ` ∆′) ` A ⇒ P has a proof π without proposition rewrite rules. By Lemma 20,
there is a proof π′ of P(Γ ` ∆) ` P(Γ′ ` ∆′) in ∅. Therefore, we can construct the proof

π....
P(Γ ` ∆),P(Γ′ ` ∆′) ` A⇒ P

π′....
P(Γ ` ∆) ` P(Γ′ ` ∆′), A⇒ P

...
P(Γ ` ∆) ` A⇒ P

Cut(P(Γ′ ` ∆′))

without proposition rewrite rules.
For Property 17(c), the base case is a consequence of Lemma 22, whereas the inductive

case is a consequence of Lemma 3. For instance, suppose P1, . . . , Pn ` Q1 ∧Q2 is trans-
formed into P1, . . . , Pn ` Q1;P1, . . . , Pn ` Q2. For i ∈ {1, 2}, suppose ` P(P1, . . . , Pn `
Qi) has a Cut-free proof in some rewrite system Ri. By Lemma 3, there is a Cut-free
proof πi of P1, . . . , Pn ` Qi in Ri. Consequently we can construct the Cut-free proof

π1....
P1, . . . , Pn ` Q1

π2....
P1, . . . , Pn ` Q2

` P(P1, . . . , Pn ` Q1 ∧Q2)
∀-r,⇒-r,∧-l,∧-r

in R1 ∪R2.
For Property 19, using Lemma 23 by induction on the execution of the algorithm, we

obtain that a sequent s is provable without Cut in a rewrite system R iff the sequents
eventually producing all rules of Rew(s) are provable without Cut in R. Suppose that for
all r ∈ Rew(s) there exists a sequent sr provable without Cut in R such that r ∈ Rew(s′).
Then the sequent producing each r can be proved without Cut in R. Therefore s can be
proved without Cut in R. 2

Note 5 P(Γ ` ∆) is compatible with Rew(Γ ` ∆) in classical logic, but it is not true
for intuitionistic logic. For instance, Rew(` ∃x. B(x)) = {B(x)→+ ¬∃x. B(x)}. Then,
` ∃x. B(x) has the following proof in Rew(` ∃x, B(x))

19

∃x. B(x) ` ∃x. B(x), B(x) Axiom

` ∃x. B(x), B(x),¬∃x. B(x)
¬-r

` ∃x. B(x), B(x)
↑-r

` ∃x. B(x) ∃-r

in the classical polarized unfolding sequent calculus but it has no proof in, for instance, the
polarized natural deduction of Dowek [15], which is an intuitionistic system. As pointed
out by a referee, it is not possible to transform an axiom ∃x. B(x) into a rewrite system
admitting Cut and compatible in intuitionistic logic, because the theory formed with the
axiom do not enjoy the witness property, but it would using the rewrite system. Notice
also that, as shown by Hermant [11], Cut admissibility in classical and intuitionistic logic
are not equivalent in deduction modulo.
Note 6 It is possible that the produced rewrite system does not admit Cut. For instance,
on ` A⇔ B ∧ ¬A the algorithm returns Crabbé’s system of the introduction.

As a nice consequence of the properties of Rew, we obtain a way to internalize in the
congruence any first-order theory:
Corollary 25 For all finite set of formulæ Γ and rewrite systems R, there exists a
rewrite system R′ such that for all finite set of formulæ ∆: Γ ` ∆ is derivable in R iff
` ∆ is derivable in R′.

PROOF. Simply take R′ = R ∪
⋃

P∈ΓRew(` P). 2

5. Abstract Completion for Cut Admissibility

We present in this section the completion procedure which permits to transform a
rewrite system into one admitting Cut. It is based on an abstract completion procedure
introduced in the framework of the Abstract Canonical Systems and Inference, that we
are first presenting.

5.1. Abstract Canonical Systems and Inference

The results in this section are extracted from Dershowitz and Kirchner [16, 30] and
Bonacina and Dershowitz [17], which should be consulted for motivations, details and
proofs. We define a framework with abstract notions of formulæ, proofs, etc. These should
not be confused with the first-order propositions and sequent-calculus proofs used before,
although the framework could be instantiated with those. In Section 5.2 we will see which
exact instance we will be using. In this section, to give intuitions, we will use standard
completion as an example of instance, but without going into details (that can be found
in Burel and Kirchner [19]).

Let A be the set of all (abstract) formulæ over some fixed vocabulary. Let P be the
set of all (abstract) proofs. These sets are linked by two functions: [·]Pm : P → 2A gives
the premises in a proof, and [·]Cl : P → A gives its conclusion. Both are extended to
sets of proofs in the usual fashion. The set of proofs built using assumptions in R ⊆ A is
denoted by

Pf (R) !=
{
p ∈ P : [p]Pm ⊆ R

}
.

20

The framework described here is predicated on two well-founded partial orderings over
P: a proof ordering > and a subproof relation �. They are related by a monotonicity
requirement (postulate E). The proof ordering expresses the quality of proofs, whereas
the subproof relation translates their structures. We assume for convenience that the
proof ordering only compares proofs with the same conclusion (p > q ⇒ [p]Cl = [q]Cl),
rather than mention this condition each time we have cause to compare proofs.
Example 26 For standard completion, formulæ are rewrite rules or equations, proofs
are proofs by rewriting (for instance a←−

s→t
b−→

u→v
c←→

e=f
d as a proof of a = d in Pf ({s →

t;u → v; e = f})). The proof ordering is chosen so that a←−
s→t

b−→
u→v

c is greater than

a←→
a=c

c, which is greater than a proof of the form a
∗−→ ∗←− c.

We will use the term presentation to mean a set of formulæ, and justification to mean a
set of proofs. We reserve the term theory for deductively closed presentations:

Th R != [Pf (R)]Cl = {[p]Cl : p ∈ P, [p]Pm ⊆ R} .
In addition to this, we assume the two following postulates:

Postulate A (Reflexivity) For all presentations R:

R ⊆ Th R

Postulate B (Closure) For all presentations R:

Th Th R ⊆ Th R

We call a proof trivial when it proves only its unique assumption and has no subproofs
other than itself, that is, if [p]Pm = {[p]Cl} and p� q ⇒ p = q, where � is the reflexive
closure of the subproof ordering �. We denote by â such a trivial proof of a ∈ A and by
R̂ the set of trivial proofs of each a ∈ R.
Example 27 For standard completion, the trivial proof of s→ t is just s−→

s→t
t.

We assume that proofs use their assumptions (postulate C), that subproofs don’t use
non-existent assumptions (postulate D), and that proof orderings are monotonic with
respect to subproofs (postulate E):
Postulate C (Trivia) For all proofs p and formulæ a:

a ∈ [p]Pm ⇒ p� â

Postulate D (Subproofs Premises Monotonicity) For all proofs p and q:

p� q ⇒ [p]Pm ⊇ [q]Pm

Postulate E (Replacement) For all proofs p, q and r:

p� q > r ⇒ ∃v ∈ Pf ([p]Pm ∪ [r]Pm). p > v � r

We make no other assumptions regarding proofs or their structure and the proof ordering
> is lifted to a quasi-ordering % over presentations:

R1 % R2 if Th R1 = Th R2 and ∀p ∈ Pf (R1). ∃q ∈ Pf (R2). p ≥ q .

A normal-form proof for R will be a proof that is minimal whatever the presentation
of the theory build on R, i.e. it is one of the minimal proofs of Pf (Th R):

Nf (R) != µPf (Th R)
!= {p ∈ Pf (Th R) : ¬∃q ∈ Pf (Th R). p > q}

21

Normal form proofs are the best, the one we wish we can build from our current presen-
tation.
Example 28 For standard completion, normal proofs are valley proofs, that is, proofs
of the form a

∗−→ ∗←− c.
The canonical presentation contains those formulæ that appear as assumptions of normal-
form proofs:

R] != [Nf (R)]Pm .

So, we will say that R is canonical if R = R]. Intuitively, the canonical presentation of
R contains the formulæ that are necessary to build all the best proofs of the theory of
R, and only these formulæ.

A presentation R is complete if every theorem has a normal-form proof:

Th R = [Pf (R) ∩Nf (R)]Cl

Canonicity implies completeness, but the converse is not true. Intuitively, R is complete
iff it contains enough to build all the theory using only its own best proofs.
Example 29 For standard completion, completeness means that every equality provable
with a rewrite system can be proved with this rewrite system using a valley proof. In other
words, a complete rewrite system is confluent.

We now consider inference and deduction mechanisms. A deduction mechanism ;
is a function from presentations to presentations and we call the relation R1 ; R2 a
deduction step. A sequence of presentations R0 ; R1 ; · · · is called a derivation. The
result of the derivation is, as usual, its persisting formulæ:

R∞
!= lim inf

j→∞
Rj =

⋃
j>0

⋂
i>j

Ri .

A deduction mechanism is completing if for each step R1 ; R2, R1 % R2 and the limit
R∞ is complete.

A completing mechanism can be used to build normal-form proofs of theorems of the
initial presentation:
Theorem 30 (Bonacina and Dershowitz [17], Lemma 5.13) A deduction mecha-
nism is completing if and only if for all derivations R0 ; R1 ; · · · ,

Th R0 ⊆ [Pf (R∞) ∩Nf (R0)]Cl .

A critical proof is a minimal proof which is not in normal form, but whose strict
subproofs are:

Crit(R) !=

 p ∈ µPf (R) \Nf (R) :

∀q ∈ Pf (R). p� q ⇒ q ∈ Nf (R)


Intuitively, a critical proof of R is a minimal (in terms of quality and structure) counter-
example that shows that R is not complete.
Example 31 For standard completion, critical proofs correspond to non-confluent crit-
ical pairs, that is, proofs a ←−

s[b]→a
s[b]−→

b→c
s[c] with no valley proof a ∗−→ ∗←− s[c]. Standard

completion adds the equation a = s[c] to the presentation, so that it is possible to build
the smaller proof a ←→

a=s[c]
s[c].

22

The idea to obtain a complete presentation is therefore to enhance the current presenta-
tion with formulæ that permits to build proofs smaller than the critical ones. Completing
formulæ are then premises of proofs smaller than critical proofs:

Comp(R) !=
⋃

p ∈ Crit(R)

p
′

is any proof such that p > p
′

[p′]Pm

To get a completing procedure, we therefore need to add at least these proofs, and we
can only add formulæ that are in the theory. In this paper, given some function C from
presentations to presentations such that Comp(R) ⊆ C(R) ⊆ Th R for all presentations
R, the deduction mechanism is therefore:

R; R ∪ C(R) .

Proposition 32 (Dershowitz and Kirchner [30], Lemma 10) This deduction
mechanism is completing.
Example 33 For standard completion, the deduction mechanism is more evolved, be-
cause there are also simplification steps. Burel and Kirchner [19] give remaining details.

5.2. Deduction Modulo is an Instance of ACS

We want to show that the polarized unfolding sequent calculus can be seen as an
instance of ACS. For this purpose, we have to define what the (abstract) formulæ, proofs,
premises and conclusions are, and to give the appropriate orderings. After this, we need
to check that the postulates are verified by the defined instance.

5.2.1. Proofs and Formulae
We aim to obtain Cut-free proofs, so that the natural candidate for abstract proofs are

polarized-unfolding-sequent-calculus proofs.
The completion procedure we want to establish deals with polarized rewrite rules over

atomic propositions. Nevertheless, the conclusions of the proofs, from which we want to
generate the rewrite rules added by the completion mechanism, are sequents. In other
words, sequents must be related to rewrite rules. We therefore assume that we have a
function Rew satisfying Properties 16, 17 and 19. Only these properties are important,
so that we do not need to use the particular algorithm given in Section 4.2.

Then, ACS formulæ will be polarized rewrite rules (similarly as for standard comple-
tion), and proofs will be polarized-unfolding-sequent-calculus proofs. The premises of a
proof are the rewrite rules used in that proof. For the conclusion, as a sequent may be as-
sociated by Rew to several rewrite rules, we would need proofs with several conclusions.
However, we can bypass this by considering several instances of a proof of Γ ` ∆, one
for each rules in Rew(Γ ` ∆). The conclusion of a proof will therefore be this particular
rule.

5.2.2. Orderings on Proofs
To define an ordering on proofs, we need the concept of proof skeleton:

23

Definition 34 The skeleton of a proof p is the tree labeled by the inference rules used
p, with the active proposition in the case of Cut and Axiom.

We define the following precedence > on inference rules: for all propositions P,Q,O, if
P is greater than Q for the subformula relation, then Cut(P) > Cut(Q) and Axiom(P) >
Axiom(Q), and for all other inference rules r of Fig. 1, Cut(P) > Axiom(O) > r. This
precedence is infinite, but it is well founded because the subformula relation is.

We order the proof skeletons with the RPO [31] based on this precedence. Since the
precedence is well-founded, so is the RPO [31]. We define the ordering over proofs by
saying that a proof is strictly greater than another if this holds for their skeletons. This
defines therefore a well-founded ordering on proofs.

We restrict this ordering to proofs which have the same conclusion.
Notice that with this ordering, a Cut-free proof is always strictly smaller than a proof

with at least one Cut at root.
Note 7 To get a completion procedure producing rewrite systems admitting Cut, it should
have been possible to use a coarser ordering, the essential property being that proofs with
Cut are bigger than proofs without. Nevertheless, the finer the ordering is, the fewer the
critical proofs are. To be able to better characterize the critical proofs, the ordering we are
using seems convenient. Moreover, we use an RPO because it is a simplification ordering
and Postulate E is therefore easier to prove.

Subproofs of a proof p are for a part defined as the subproofs of p for the sequent
calculus. We also want to say that if a proof do not use a proposition (i.e. it is the
weakened version of another proof), then the strengthened proof should be smaller for
the subproof relation. We therefore consider the transitive closure of the subproof ordering
in the unfolding sequent calculus and this “weakening” ordering.
Definition 35 We say that π�spπ

′ iff π′ is a strict subproof of π in the sequent calculus.
We say that π�w π

′ if there is a proposition in π that can be pruned from all sequents
in π to produce the valid proof π′.
�PUSC will be the transitive closure of �sp ∪�w.

Lemma 36 If π1 �PUSC π2 then there exists π3 such that π1 �∗sp π3 �∗w π2.

PROOF. We only need to show that if π1 �w π2 �sp π3 then there exist some π′2 such
that π1 �sp π

′
2 �w π3. If π1 �w π2 there exists some proposition P that can be pruned

in the sequents in π1 to get π2. Let π′2 be π3 in which P is added in each sequents by
weakening in the same side as in π1. Then π′2 is a subproof of π1. 2

Unfortunately, this definition is not sufficient to define trivial proofs, because if we use
a premise through a ↑-l or ↑-r rule, there will always be a strict subproof, so that there
are no proofs using premises without strict subproofs. For instance,

P ` P Axiom

A ` P ↑-l

seems a good candidate for the trivial proof ̂A→− P , but is contains the subproof

P ` P Axiom.
To solve this problem, we can manually add the trivial proofs. We therefore consider

proofs â for each formula a ∈ A.

24

We have to extend the ordering > to trivial proofs: it can be simply done by saying
that they cannot be compared with other proofs.

For Postulate C to be verified, we have to extend the subproof relation:

p� q if – q is a subproof of p for �PUSC

– or q = â with a ∈ [p]Pm .

This relation is well-founded because of the wellfoundedness of the subproof relation
in the sequent calculus, and because trivial proofs cannot have strict subproofs.

To summarize, with respect to the definitions of ACSs (see Section 5.1) deduction
modulo can be seen as an ACS, in the following way:
– A: formulæ are polarized rewrite rules

A != PRR (= Rew(S) by Property 16)

– P: proofs are either couples formed with a sequent calculus proof and a polarized rule
in the rewrite system associated with its conclusion, or trivial proofs:

P !=


〈 ...

Γ ` ∆
, A→± P

〉
∈ PUSC × A : (A→± P) ∈ Rew(Γ ` ∆)


∪ {â : a ∈ A}

– [·]Pm : premises of a non-trivial proof are the rewrite rules used in its first component,
the unique premise of a trivial proof is the formula it corresponds to.

– [·]Cl : the conclusion of a non-trivial proof is its second component, the conclusion of a
trivial proof is the formula it corresponds to.

– >: the ordering on proofs is defined by p > q if p and q are not trivial, their second
component is the same as well as the conclusion of their first component, and the
skeleton of the first component of p is greater than the one of q for the RPO based
on the precedence defined by: for all propositions P,Q,O, if P is greater than Q for
the subformula relation, then Cut(P) > Cut(Q) and Axiom(P) > Axiom(Q), and for
all other inference rules r of Fig. 1, Cut(P) > Axiom(O) > r.

– �: the subproof ordering is defined by p� q if
· neither p nor q are trivial and the first component of p is greater than the first

component of q for �PUSC ;
· or q = â with a ∈ [p]Pm .
With these definitions we can prove the main theorem of this section:

Theorem 37 (Instance of ACS) The unfolding sequent calculus is an instance of
ACS, with the definitions of A, P, [·]Pm , [·]Cl , > and � given above.

PROOF. First we need to show that > and � are strict and well-founded orderings. It
is not too difficult to prove that > is irreflexive and transitive. It is well founded because
the RPO on skeleton is, because the subformula relation is. Concerning �, first remark
that â�q iff q = â. Then, we only need to show that �PUSC is a strict ordering: indeed, it
is trivially irreflexive, and transitive by definition. To show that � is well founded we also
only need to show that �PUSC is. This is less trivial, but can be shown using Lemma 36
which says that if p �PUSC q, then q can be obtained by pruning some propositions in

25

a subproof of p. Then we only need to show that �sp and �w are well founded, which
holds because the first relation makes the skeleton of proof decrease whereas the second
makes the number of propositions in the conclusion decrease.

We then show the postulates:
– Postulate A: suppose a ∈ R, we want to show that a is the conclusion of a proof built

with R. â is such a proof.
– Postulate B: let a be in Th Th R. By definition there is a proof p ∈ Pf (Th R) such that

[p]Cl = a. If p is trivial, then {a} = [p]Pm ⊆ Th R therefore a ∈ Th R. If p is not trivial,
then its first component πp ∈ PUSC proves Γ ` ∆ in Th R for some Γ ` ∆ such that
a ∈ Rew(Γ ` ∆). Rewrite rules used in πp are therefore in Th R. Let b ∈ [p]Pm be such
a rule. There exists q ∈ Pf (R) such that [q]Cl = b. If q is trivial, then {b} = [p]Pm ⊆ R
therefore b = [p]Cl ∈ R. Else, its first component πq ∈ PUSC proves s in R for some
s such that b ∈ Rew(s). Using Property 17 and Proposition 18, we can transform πp

into a proof $p of Γ,Prop(s) ` ∆ in [p]Pm \Rew(s). One can apply ∧-l, ∨-r, ⇒-r and
∀-r to πq to get a proof of ` Prop(s) in R. By applying Cut to this proof and $p we
obtain a proof of Γ ` ∆ in [p]Pm \ Rew(s) ∪ R. By repeating this process to every
premises of p not in R, we eventually obtain a proof π in R whose conclusion is Γ ` ∆.
Then, a = [〈π, a〉]Cl ∈ [Pf (R)]Cl = Th R.

– Postulate C: it holds by definition of the subproof relation �.
– Postulate D: suppose p � q. If q = â then by definition of �, we have [q]Pm = {a} ⊆

[p]Pm . If q is not trivial, neither is p. In that case, by definition of �PUSC the first
component of q use a subset of the rules used in the first component of p.

– Postulate E: suppose p�q > r. Because q is comparable with r, none of them is trivial,
and p neither. We call πp, πq and πr their first components. Because of Lemma 36,
πq can be obtained by pruning some first-order propositions in a subproof π′ of πp.
By definition of >, πq and πr have the same conclusion. We can therefore add the
propositions pruned in π′ in πr, and replace π′ by this proof in πp to get a valid proof

πv. If a is the second component of p, then let v != 〈πv, a〉, which is a correct
ACS proof because πp and πv have the same conclusion. Then p > v because the RPO
is a simplification ordering and because if π1 �w π2, then π1 and π2 have the same
skeleton. Moreover, by definition of πv, v � r. Furthermore, the rewrite rules used in
πv are included in the ones used in πp and πr, therefore v ∈ Pf ([p]Pm ∪ [r]Pm).
2

5.3. A Generalized Completion Procedure

We want to define a completion procedure through critical proofs. For this, we first
need some characterizations of the normal-form proofs and the critical proofs. The limit
of this completion procedure will be an equivalent rewrite system modulo which the
sequent calculus admits Cut.

5.3.1. Normal-form Proofs and Critical Proofs in Deduction Modulo
Proposition 38 (Characterization of Normal-Form Proofs) A proof in the un-
folding sequent calculus is in normal form iff it is either a trivial proof or its first com-
ponent is a Cut-free proof with no unneeded logical rules, where Axiom is applied only to
atomic propositions.

26

PROOF. If a proof p in Pf (R) is not a trivial proof, and its first component πp possesses
a Cut at position p, then using Property 17(c), we know that there exists a Cut-free proof
of the sequent ` P(Γ ` ∆) in Rew(Γ ` ∆) where Γ ` ∆ is the conclusion of πp|p. Using
Lemma 3 we obtain a Cut-free proof πq of Γ ` ∆. Because πq is Cut-free and πp|p has a Cut

at root, the skeleton of πp|p is greater than the one of πq for the RPO. Replacing πp|p by
πq in p using Postulate E, we obtain a smaller proof than p which is in Pf (ThR) because
πq is by assumption in Rew(Γ ` ∆) =

⋃
a∈Rew(Γ`∆)[〈πp|p, a〉]Cl , and each 〈πp|p, a〉 is in

Pf (R). Therefore p cannot be in normal form.
If a proof p is not a trivial proof, and its first component πp has a unneeded logical

rule at position p, then the direct subproofs of πp|p shows the same conclusion as πp|p
when weakened, and are smaller because an RPO is a simplification ordering and the
weakening of a proof does not change its skeleton. By using Postulate E we can obtain a
proof smaller than p, and therefore p cannot be in normal form.

If a proof p is not a trivial proof, and its first component apply Axiom to a non-atomic
proposition, then it is always possible to replace this application by some proof where
Axiom is applied only to atomic propositions. Given the definition of the precedence, this
proof is smaller than the original application of Axiom and p is therefore not minimal.

Due to our definition of the precedence of the RPO, if a non-trivial proof p is not
minimal in every presentation of a theory, i.e. there exists a smaller proof q, then either
the first component of p contains a Cut, or it applies Axiom on a non-atomic proposition,
or the first component of q is a weakened subproof of the one of p, i.e. unneeded rules
were applied in p.

A trivial proof in Pf (R) is not comparable with any other proof, in particular in
Pf (Th R), so that it is in normal form. 2

We give now a characterization of the critical proofs in deduction modulo.
Proposition 39 (Critical Proofs in Deduction Modulo) Critical proofs in deduc-
tion modulo are non trivial and their first component is of the form

π....
Γ, A, P ` ∆

Γ, A ` ∆
↑-l(B →− P1)

π′....
Γ ` Q,A,∆

Γ ` A,∆ ↑-r(C →+ P2)

Γ ` ∆
Cut(A)

where
– π and π′ are Cut-free;
– π and π′ do not use unneeded logical rules;
– π and π′ apply Axiom only to atomic propositions;
– Γ contains only universally quantified propositions and atomic propositions different

from A;
– ∆ contains only existentially quantified propositions and atomic propositions different

from A;
– all propositions of Γ ∪∆ are principal proposition either in some Axiom (and not ↑-l

nor ↑-r), ∀-l or ∃-r in π or π′.
– at least one of B →− P1 or C →+ P2 is not a term rewriting.

27

PROOF. We essentially follow the proof of the Hauptsatz of Girard, Lafont, and Taylor
[32], Chapter 13.

Because of Proposition 38, subproofs of a critical proof (which are by definition in
normal form) that are not trivial must be Cut-free. Furthermore, because a critical proof
is not in normal form, then it possesses either a Cut, a unneeded logical rule or apply
Axiom to a non atomic proposition. In the second and third cases, we can find a smaller
proof in the same presentation, contradicting the minimality of critical proofs. Therefore
a critical proof has a Cut at its root. It is a proof of the form

π

 π1 · · · πn

Γ, P ` ∆
r

π′1 · · · π′m

Γ ` P,∆
r’

π′

Γ ` ∆
Cut(P)

where π and π′ are in normal form, so are cut-free, do not use unneeded rules and
apply Axiom only to atomic propositions. Moreover, if A ∈ Γ∪∆, then Cut is unneeded.
Furthermore, if Γ contains a non-atomic proposition which is not universally quantified,
then either it can be pruned, in which case we can obtain a proof smaller for � which is
not in normal form (It contains a Cut.); or it is the principal proposition of some inference
rule (different from ∀-l and ↑-l) in π or π′. But it is possible to permute this inference
rule with all other inference rules until Cut (see Note 1), in which case we obtain a proof
smaller for > in the same presentation. This is also the case if some atomic proposition
is rewritten using ↑-l. For ∆ this is dual. All propositions in Γ ∪∆ are used somewhere,
else they could be pruned and we could obtain a proof smaller for � which would not be
in normal form.

In the following, $,$′, $1, . . . , $n, $
′
1, . . . , $

′
m are proof obtained from

π, π′, π1, . . . , πn, π
′
1, . . . , π

′
m by weakening.

We can now check the different cases that can be found in Section 13.2 of Girard et al.
[32] (note that we do not have to consider structural rules in the polarized unfolding
sequent calculus):

(i) r is Axiom. There are two cases :
– the principal proposition of the Axiom is P , then we have necessarily P ∈ ∆ and π′

is therefore a proof of Γ ` ∆ which is smaller than the initial proof, contradicting
its minimality;

– the principal proposition of the Axiom is another proposition Q, then Q ∈ Γ and

Q ∈ ∆, so that we can build the proof Γ ` ∆ Axiom which is smaller than the
initial proof, contradicting its minimality.

(ii) r’ is Axiom. This case is handled as case i.
(iii) r is a logical rule other than a left one with principal proposition P . In this case,

the conclusion of a subproof πi has the form Γi, P ` ∆i, because r does not touch
P . We can build the proof

28

$1 $′

...
...

Γ,Γ1, P ` ∆,∆1 Γ,Γ1 ` P,∆,∆1

Γ,Γ1 ` ∆,∆1

Cut(P)

$n $′

...
...

Γ,Γn, P ` ∆,∆n Γ,Γn ` P,∆,∆n

Γ,Γn ` ∆,∆n

Cut(P)

·············
Γ,Γ ` ∆,∆

r

and then use Lemma 5. If we look at the proof of this lemma, we can show by
induction that the skeleton of the contracted proofs is smaller than the original one
for the RPO. We therefore have a smaller proof than the initial proof, contradicting
its minimality.

(iv) r’ is a logical rule other than a right one with principal proposition P . This case is
handled as case iii.

(v) Both r and r’ are logical rules, r a left one and r’ a right one, of principal proposition
P . This is one of the key cases as given in Section 13.1 of Girard et al. [32] : by
replacing the Cut over P by Cuts over subformulæ of P we obtain a smaller proof,
thus contradicting the minimality of the original proof. For instance, if P = P1∧P2,
the initial proof

π1....
Γ, P1, P2 ` ∆

Γ, P1 ∧ P2 ` ∆ ∧-l

π′1....
Γ ` P1,∆

π′2....
Γ ` P2,∆

Γ ` P1 ∧ P2,∆
∧-r

Γ ` ∆
Cut(P1 ∧ P2)

is greater than the proof

π1....
Γ, P1, P2 ` ∆

$′2....
Γ, P1 ` P2,∆

Γ, P1 ` ∆
Cut(P2)

π′1....
Γ ` P1,∆

Γ ` ∆
Cut(P1)

(vi) r or r’ is an unfolding rule applying to another proposition than P . This case can
in fact be handled as case iii.

(vii) r is an unfolding rule and r’ is a logical rule, both applying to P . This case cannot
occur, because only atomic propositions are unfolded, so that no logical rule can
be applied to P .

(viii) r is a logical rule and r’ is an unfolding rule, both applying to P . This case is
handled as case vii.

(ix) r and r’ are both unfolding rules applying to P . Therefore P has to be atomic, and
is rewritten by B →− P1 to the left and C →+ P2 to the right. If both of this
rewriting are term rewriting, then, because of confluence of RT (Σ,V), we know that
there is some P ′ such that P1

∗−→
RT (Σ,V)

P ′
∗←−

RT (Σ,V)

P2. The proof

29

π1....
Γ, P1 ` ∆

Γ, P ′ ` P ′,∆ Axiom

Γ, P2 ` P1,∆
Unfolding Rules

$′1....
Γ ` P1, P2,∆

Γ ` P1,∆
Cut(P2)

Γ ` ∆
Cut(P1)

is smaller than the initial proof (remind that the term rewrite relation is by defini-
tion included in the subformula relation), contradicting its minimality. Otherwise,
we are exactly in the case stated in the theorem.

2

Note 8 If we suppose, as in the order condition of Hermant [33], that the proposition
rewrite system is confluent, and that it is included in an well-founded ordering compatible
with the subformula relation, then we can take this ordering instead of the subformula
relation to compare Cuts in the precedence. Doing this, we can prove that there are no
minimal proofs of this form, and consequently no critical proofs. Therefore the admissi-
bility of Cut is verified, as a by-product of the completion procedure.

The main difference with Hermant [33] is that he gives a semantic proof of the ad-
missibility of Cut, whereas we have here a Cut elimination algorithm, i.e. a terminating
syntactical process that transforms a proof into a Cut-free one. It is proved by Dowek and
Werner [34] that such an order condition provides normalization.

The fact that the compatibility of the rewrite system with the subformulæ relation im-
plies the Cut-admissibility was also independently found by Aiguier, Boin, and Longuet
[35], with the same kind of ordering over proofs.
Theorem 40 (Undecidability of Critical Proof Search) The problem

Input: A propositional rewrite system R and a sequent Γ ` ∆.
Decide if Γ ` ∆ is the conclusion of a critical proof in R.

is undecidable.

PROOF. We reduce to the problem of validity in first-order logic.
Let P be a first-order proposition.
Let A,B be atomic propositions not appearing in P . Consider the following proposi-

tional rewrite system: A→− B

A→+ P
.

We can check that ` B is the conclusion of a critical proof in it if and only if P is valid.
Indeed, a critical proof is necessarily of the form

A,B ` B Axiom

A ` B ↑-l

Proof of P with no ↑-l nor ↑-r....
` P,A,B
` A,B ↑-r

` B Cut(A)

2

30

Of course, in the quantifier-free case, this problem is decidable. It remains to be in-
vestigated for what fragments of first-order logic it is decidable, in particular if these
fragments are the same that for the validity problem.

5.3.2. The Completion Procedure
As we wrote in Section 5.1, we want to define a completing deduction mechanism by

adding to a presentation A a presentation C(A) such that Comp(A) ⊆ C(A) ⊆ Th A.
Here, using Property 17(c), we know that for all proofs p whose first component is a

proof π of a sequent Γ ` ∆ there exists a Cut-free proof of the sequent ` P(Γ ` ∆) in
Rew(Γ ` ∆). Using Lemma 3 we obtain a Cut-free proof π of Γ ` ∆ in Rew(Γ ` ∆). If
the proof p is critical, π has a Cut at its root and thus it is greater than π′, so that we
can use this particular π′ in the definition of Comp. Note that if p is critical, so are the
proofs with the same first component π but another conclusion (that is, another rule in
Rew(Γ ` ∆)). We therefore have to add the premises of π′, but these premises are in
fact in Rew(Γ ` ∆), and we obtain all Rew(Γ ` ∆) by considering the conclusion of all
the critical proofs whose first component is π:

Comp(A) !=
⋃

p∈Crit(A)

[p]Cl .

The best procedure is thus to add only the conclusions of critical proofs. Nevertheless,
searching for these conclusions is undecidable, so that we must use a superset of them.
Here we will add the conclusion of the proofs in the form of Proposition 39. (Note that
this proposition is only a necessary condition for being critical.)

We must consider proofs of the form of Proposition 39. As π and π′ are Cut-free and do
not use unneeded logical rules, they could be found using for instance a tableau method
modulo, like TaMed [7, 10], which is complete with respect to Cut-free proofs, if we knew
Γ and ∆. The idea is therefore to apply a tableau method for the deduction modulo
on A,P ` and ` A,Q until they are either proved or the method terminates, and to
complete the sequents to close all branches. Of course, the tableau method may not
terminate, in which case we have to arbitrarily decide to stop it. If we stop it too early,
then maybe there remains some open branch that could be closed, and therefore Γ and
∆ in the critical-proof candidate will not be minimal. This is not a problem because the
generated rewrite rules for this will be more general than the one for the real critical
proof. However, the longer the tableau method runs, the more accurate the additional
rules will be.

Then, we have to close all remaining open branches by adding some propositions in
Γ and ∆. We know we do not need to add A. The formulæ in Γ and ∆ can be non-
atomic formulæ, in which case they could be further decomposed by the tableau method.
However, if we use a tableau method with meta-variables (see [36]), the order in which
formulas are decomposed in no longer relevant, only the unification of meta-variables
is, so that they could have occurred before the decomposition of A,P ` or ` A,Q. As
Axioms are applied only to atomic propositions, we only need to consider such cases
to close the branches, and then, we may need to recompose the atomic formulæ added
to the branches to get the actual Γ and ∆. In particular, if we added some atomic
formula in which there is a variable which was introduced in the proof by some ∃-l or ∀-r

31

(an Eigenvariable) 5 , then it cannot appear in Γ ∪∆. It therefore has to be introduced
using a quantification. For instance, if we wanted to add B(x) in Γ and x is such an
Eigenvariable, we have to add ∀x. B(x) instead. We need to do so for all possible choices
of atomic propositions different from A to close the branches, and a priori for all choices
of recompositions. We would obtain that way all possible conclusions Γ ` ∆ of proofs
of the form of Proposition 39, and C(A) would be the union of Rew(Γ ` ∆) for each
of them. However, it seems that we only need to recompose the formulæ to add the
quantifications protecting the Eigenvariables. Indeed, by applying other recompositions,
we obtain sequents Γ ` ∆ whose rules in Rew(Γ ` ∆) are redundant w.r.t. the rules
obtained without the recomposition — this is due to the fact that Rew is working by
decomposing the formulæ in the sequent.

We repeatedly complete the rewrite system until a fixpoint is reached. The limit admits
Cut.
Theorem 41 (Cut Admissibility of the Limit) For all sequents Γ ` ∆, for all
proposition rewrite systems R0, Γ ` ∆ has a proof in R0 if and only if it has a Cut-
free proof in R∞.

PROOF. By Proposition 32, we know that our deduction mechanism is completing,
and therefore by Theorem 30

Th R0 ⊆ [Pf (R∞) ∩Nf (R0)]Cl . (1)

The “if” part comes from the fact that we only add rules that corresponds to sequents
provable in R0. For the “only if”, suppose that Γ ` ∆ has a proof in R0, then using (1)
there exists a proof pa of conclusion a in Pf (R∞)∩Nf (R0) for all rules a ∈ Rew(Γ ` ∆).
If pa is trivial, then we can use Property 17(c) to find a Cut-free proof with the same
conclusion, otherwise Proposition 38 shows that pa is Cut-free. We can therefore conclude
with Property 19. 2

6. Examples

In the case of Crabbé’s example presented in the introduction, the input is the rewrite
system {A→+ B∧¬A;A→− B∧¬A} and the completion procedure generates B →− ⊥.

With this new rule, we can show that there are no more critical proofs. The proposition
rewrite system A→ B ∧ ¬A

B → ⊥

admits Cut.
The next example deals with quantifiers and is extracted from Hermant [33]:

r ∈ r → ∀y. y ' r ⇒ y ∈ r ⇒ C

where y ' z
!= ∀x. (y ∈ x ⇒ z ∈ x). It is terminating and confluent, but does not

admits Cut.

5 Working using meta-variables, this would mean that the formula contains a Skolem symbol.

32

The critical proofs have the form

....
r ∈ r, ∀y. y ' r ⇒ y ∈ r ⇒ C `

r ∈ r ` ↑-l

....
` r ∈ r, ∀y. y ' r ⇒ y ∈ r ⇒ C

` r ∈ r ↑-l

` Cut(r ∈ r)

The left part can be developed as

r ∈ r, C ` r ∈ r ` t1 ∈ r
r ∈ r, t1 ∈ r ⇒ C ` ⇒ -l

r ∈ r, t1 ∈ z ` r ∈ z
r ∈ r ` t1 ∈ z ⇒ r ∈ z ⇒ -r

r ∈ r ` t1 ' r
∀-r

r ∈ r, t1 ' r ⇒ t1 ∈ r ⇒ C ` ⇒ -l

r ∈ r, ∀y. y ' r ⇒ y ∈ r ⇒ C ` ∀-l

and the right part as

r ∈ t0, z ∈ r ` r ∈ r, C z ∈ r ` z ∈ t0, r ∈ r, C
z ∈ t0 ⇒ r ∈ t0, z ∈ r ` r ∈ r, C

⇒ -l

z ' r, z ∈ r ` r ∈ r, C ∀-l

z ' r ` r ∈ r, z ∈ r ⇒ C
⇒ -r

` r ∈ r, z ' r ⇒ z ∈ r ⇒ C
⇒ -r

` r ∈ r, ∀y. y ' r ⇒ y ∈ r ⇒ C
∀-r

.

To close the proofs, we can for instance have t0 = r = t1, and C in the right part of the
sequent (to close r ∈ r, C `). One can see that other choices will not produce critical
proofs. The resulting sequent is therefore ` C, and the added rule is C →+ >. This rule
does not generate new critical proofs, and consequently, the proposition rewrite system

r ∈ r →+ ∀y. y ' r ⇒ y ∈ r ⇒ C

r ∈ r →− ∀y. y ' r ⇒ y ∈ r ⇒ C

C →+ >

admits Cut.

One can also think of another example, where there remains quantifiers in the con-
clusion: one can replace B by ∃x. ∀y. B ∧ C(x, y) in Crabbé’s example to get the rule:
A→ (∃x. ∀y. B ∧ C(x, y)) ∧ ¬A where A and B are atomic propositions, and C a pred-
icate of arity 2.

We first search for a proof of A, (∃x. ∀y. B ∧ C(x, y)) ∧ ¬A `, and we get

A, (∃x. ∀y. B ∧ C(x, y)) ` A
Axiom(A)

A, (∃x. ∀y. B ∧ C(x, y)),¬A ` ¬-l

A, (∃x. ∀y. B ∧ C(x, y)) ∧ ¬A ` ∧-l

We try do the same for the right part

33

` ∃x. ∀y. B ∧ C(x, y), B,A ` ∃x. ∀y. B ∧ C(x, y), C(x, y), A
` ∃x. ∀y. B ∧ C(x, y), B ∧ C(x, y), A

∧-r

` ∃x. ∀y. B ∧ C(x, y),∀y. B ∧ C(x, y), A ∀-r

` ∃x. ∀y. B ∧ C(x, y), A ∃-r A ` A
Axiom(A)

` ¬A,A ¬-r

` (∃x. ∀y. B ∧ C(x, y)) ∧ ¬A,A ∧-r

A→ (∃x. ∀y. B ∧ C(x, y)) ∧ ¬A has already been applied in the right part of the sequent,
so it is not useful to do it again, and so we cannot close the derivation. We see that we
have to add propositions in the context to close the remaining branches. As we do not
add A, and Axiom is only applied to atomic propositions, there remains only the choice
to add B in Γ for the left branch and C(x, y) in Γ for the right branch. However, in
C(x, y), the variable y is an Eigenvariable, so we need in fact to add ∀y. C(x, y). Finally,
the conclusion of the critical proof is B, ∀y. C(x, y) ` which gives for instance the rewrite
rule B →− ∀x. ¬∀y. C(x, y). With this new rule, there are no longer critical proofs. In
particular we have the following Cut-free proof of ∃x. ∀y. B ∧ C(x, y) `, corresponding
to the conclusion B ` of the critical proof in the original Crabbé system:

∀y. B ∧ C(x, y), C(x, y0), B,∀x. ¬∀y. C(x, y), C(x, y) ` C(x, y0) Axiom

∀y. B ∧ C(x, y), B ∧ C(x, y0), B,∀x. ¬∀y. C(x, y), C(x, y) ` C(x, y0) ∧-l

∀y. B ∧ C(x, y), B,∀x. ¬∀y. C(x, y), C(x, y) ` C(x, y0) ∀-l

∀y. B ∧ C(x, y), B,∀x. ¬∀y. C(x, y), C(x, y) ` ∀y. C(x, y) ∀-r

∀y. B ∧ C(x, y), B,∀x. ¬∀y. C(x, y),¬∀y. C(x, y), C(x, y) ` ¬-l

∀y. B ∧ C(x, y), B,∀x. ¬∀y. C(x, y), C(x, y) ` ∀-l

∀y. B ∧ C(x, y), B, C(x, y) `
↑-l

∀y. B ∧ C(x, y), B ∧ C(x, y) ` ∧-l

∀y. B ∧ C(x, y) ` ∀-l

∃x. ∀y. B ∧ C(x, y) ` ∃-l

In these three examples, only one step was needed to produce a complete system. But
the system

R =



A→− B

A→+ C

D →− B

D →+ E

may need two steps to produce the completed system

R ∪


B →− C

B →+ E

C →+ E

.

Indeed, the first two rules of R create the critical proof

34

B,A,C ` C Axiom

B,A ` C ↑-l
B ` A,B,C Axiom

B ` A,C ↑-r

B ` C Cut(A)

that leads for instance to the rewrite rule B →− C. Similarly the two other rules may
complete the system by the rewrite rule B →+ E. Consequently, after one step the
system has a critical proof

E,B,C ` C Axiom

E,B ` C ↑-l
E ` B,E,C Axiom

E ` B,C ↑-r

E ` C Cut(B)

and may be completed by the rewrite rule C →+ E.
We nevertheless conjecture that if the initial proposition rewrite system is confluent,

the completion procedure is terminating, possibly in one step.

7. Conclusion and Perspectives

This paper reveals a deep logical correspondence between the sequent calculus, proof
orderings and completion. We have first shown the boundaries of the research for an
optimal criterion which ensures the Cut admissibility of a rewrite system by proving its
undecidability in general. Then, we have proposed how to circumvent this issue by trans-
forming the rewrite systems we are working with into an equivalent one which admits
Cut. This is done by setting the right abstract canonical system structure on the proof
space of the unfolding sequent calculus modulo, which is equivalent to the asymmet-
ric sequent calculus modulo, in particular concerning Cut admissibility. This permits to
use abstract completion to recover the admissibility of Cut. This abstract completion is
precise enough to be operational, and it is actually implemented, based on a prototype
of the tableau method modulo TaMed [10], and coded in the language TOM+OCaml
[http://tom.loria.fr/, http://caml.inria.fr/ocaml/index.en.html]. The imple-
mentation is available on the SVN distribution of TOM (see http://gforge.inria.
fr/scm/?group_id=78) in the directory trunk/jtom/application/completion. Note
that because the implemented tableau method is for non-polarized deduction modulo,
the completion procedure adds non-polarized rewrite rules thanks to the translation ·∓
given in Section 2.2 before Proposition 9. All this opens many questions that we are now
considering.

The limit of the completion procedure admits Cut in the polarized sequent calculus,
and therefore we can translate it by Corollary 8 and Proposition 9 into a non-polarized
rewrite system that admits Cut in the asymmetric sequent calculus modulo. However,
this system may be non-confluent, so we do not know if it admits Cut in the original
version of the sequent calculus modulo of Dowek et al. [4]. However, if we begin with a
confluent rewrite system R0, then the original sequent calculus modulo R0 is equivalent
to the asymmetric sequent calculus modulo R∓∞ without Cut. This is exactly what we
wanted, since the asymmetric sequent calculus modulo without Cut is analytic, in the
sense that rewriting is oriented from the bottom to the top of proofs, which induces
that the asymmetric sequent calculus modulo is well adapted for proof search. The usual
restriction of deduction modulo to confluent rewrite system was mainly imposed to be

35

able to check the congruence using only rewritings, and is no longer needed as far as we
know that the final system prove the same that the original one.

The ordering on proofs we are using is adapted to consider Cut admissibility as a
normal-form property of an ACS, but produces too many critical proofs, in particular
when quantifiers are involved, because some of the rules produced by the completion
procedure subsumes other ones. (For instance A→+ ∃x. P (x) subsumes A→+ P (t) for
a particular t ∈ T (Σ, V).) This ordering has therefore to be refined in order to restrict
oneself to the more relevant critical proofs.

Furthermore, our procedure can be used to determine if a system admits Cut. Indeed, if
a proposition rewrite system is a fixpoint of this procedure, then we know that it admits
Cut. Nevertheless, the converse is not true, essentially because we have to use a superset
of the critical proofs. It will be interesting to check what results this procedure will give
on system that are proved to admits Cut, like Higher Order Logic [37] or arithmetic [38],
or for systems for which the admissibility of Cut is unknown yet, such as Pure Type
Systems [39].

Indeed, we have shown that the Rew algorithm provides a constructive way to trans-
form a first-order theory into a proposition rewrite system. Up to efficiency questions,
this closes the problem of transforming proofs in a theory into proofs modulo, i.e. to
replace deduction steps by computational ones. What remains still open and challenging
is to understand how to systematically build first-order theories out of general ones (e.g.
HOL or arithmetic) and how to balance the amount of computations on term versus the
one on propositions.

Moreover, our procedure only guarantees the admissibility of Cut, and does not provide
a Cut elimination procedure. In other words, we do not have a process that transform
proofs with Cuts to Cut-free ones, so that we have to build the Cut-free proofs from
scratch. In particular, for the completed system, normalization may not hold. For in-
stance, with Crabbé’s rule, once the system is completed, the initial proof of B ` can
still be constructed, and it is still not normalizing, i.e. the λ-term that is associated to
the proof can be infinitely β-reduced. We can notice that, even if Cut is admissible, the
proof of Proposition 39 does not give a cut elimination procedure: we know that there are
no critical proofs, but we do not know how to transform a proof in the form of Proposi-
tion 39 into a smaller one (without building a Cut-free proof from scratch). We probably
have to introduce some simplification rules in order to suppress the possibility to build
non-normalizing proofs. For instance, in our example, we could simplify A→ B∧¬A into
A→ ⊥∧¬A using B → ⊥, and then simplify it to A→ ⊥, the system {A→ ⊥ ; B → ⊥}
being normalizing. Besides, with such simplification rules, we may obtain the canonical
presentation of the system.

Lastly, it will be interesting to understand how the results presented here can be
transferred to intuitionistic logic. In particular, the impossibility to build a Rew function
without breaking the witness property shows that it is not be trivial. We tackle this issue
in [26].

References

[1] G. Gonthier, A computer-checked proof of the four colour theorem, unpublished,
available at http://research.microsoft.com/~gonthier/4colproof.pdf.

36

[2] B. Chetali, A world-first smart card cc certificate with formal assurances, presented
at the Third Franco-Japanese Computer Security Workshop. Nancy, France (2008).

[3] B. Chetali, Q. H. Nguyen, Industrial use of formal methods for a high-level security
evaluation, in: J. Cuéllar, T. S. E. Maibaum, K. Sere (Eds.), FM, Vol. 5014 of LNCS,
Springer, 2008, pp. 198–213.

[4] G. Dowek, T. Hardin, C. Kirchner, Theorem proving modulo, Journal of Automated
Reasoning 31 (1) (2003) 33–72.

[5] G. Peterson, M. E. Stickel, Complete sets of reductions for some equational theories,
Journal of the ACM 28 (1981) 233–264.

[6] H. Barendregt, E. Barendsen, Autarkic computations in formal proofs, Journal of
Automated Reasoning 28 (3) (2002) 321–336.

[7] R. Bonichon, TaMeD: A tableau method for deduction modulo., in: D. A. Basin,
M. Rusinowitch (Eds.), IJCAR, Vol. 3097 of LNCS, Springer, 2004, pp. 445–459.

[8] G. Burel, Unbounded proof-length speed-up in deduction modulo, in: J. Duparc,
T. A. Henziger (Eds.), CSL 2007, Vol. 4646 of LNCS, Springer, 2007, pp. 496–511.

[9] M. Crabbé, Non-normalisation de la théorie de Zermelo, manuscript (1974).
[10] R. Bonichon, O. Hermant, A semantic completeness proof for TaMed, in: M. Her-

mann, A. Voronkov (Eds.), LPAR, Vol. 4246 of LNCS, Springer, 2006, pp. 167–181.
[11] O. Hermant, Méthodes sémantiques en déduction modulo, Ph.D. thesis, École Poly-

technique (2005).
[12] G. Dowek, Polarized resolution modulo, manuscript (2009).
[13] G. Dowek, Confluence as a cut elimination property., in: R. Nieuwenhuis (Ed.), RTA,

Vol. 2706 of LNCS, Springer, 2003, pp. 2–13.
[14] D. E. Knuth, P. B. Bendix, Simple word problems in universal algebras, in: J. Leech

(Ed.), Computational Problems in Abstract Algebra, Pergamon Press, Oxford, 1970,
pp. 263–297.

[15] G. Dowek, What is a theory?, in: H. Alt, A. Ferreira (Eds.), STACS, Vol. 2285 of
LNCS, Springer, 2002, pp. 50–64.

[16] N. Dershowitz, C. Kirchner, Abstract canonical presentations, Theoretical Computer
Science 357 (2006) 53–69.

[17] M. P. Bonacina, N. Dershowitz, Abstract canonical inference, ACM Trans. Comput.
Logic 8 (1).

[18] N. Dershowitz, Canonicity, in: I. Dahn, L. Vigneron (Eds.), FTP, Vol. 86 of Elec-
tronic Notes in Theoretical Computer Science, Elsevier Science Publishers B. V.
(North-Holland), 2003, pp. 147–158.

[19] G. Burel, C. Kirchner, Completion is an instance of abstract canonical system infer-
ence, in: K. Futatsugi, et al. (Eds.), Algebra, Meaning and Computation, Vol. 4060
of LNCS, Springer, 2006, pp. 497–520.

[20] G. Burel, C. Kirchner, Cut elimination in deduction modulo by abstract completion,
in: S. Artemov, A. Nerode (Eds.), LFCS, LNCS, Springer, 2007, pp. 115–131.

[21] F. Baader, T. Nipkow, Term Rewriting and all That , Cambridge University Press,
1998.

[22] G. Gentzen, Untersuchungen über das logische Schliessen, Mathematische Zeitschrift
39 (1934) 176–210, 405–431, translated in Szabo, editor., The Collected Papers of
Gerhard Gentzen as “Investigations into Logical Deduction”.

[23] J. H. Gallier, Logic for Computer Science: Foundations of Automatic Theorem Prov-
ing, Vol. 5 of Computer Science and Technology Series, Harper & Row, New York,

37

1986, revised On-Line Version (2003), http://www.cis.upenn.edu/~jean/gbooks/
logic.html.

[24] S. C. Kleene, Mathematical Logic, John Wiley, New York, USA, 1967.
[25] G. Dowek, About folding-unfolding cuts and cuts modulo, Journal of Logic and

Computation 11 (3) (2001) 419–429.
[26] G. Burel, Automating theories in intuitionistic logic, in: S. Ghilardi, R. Sebastiani

(Eds.), FroCoS, Lecture Notes in Artificial Intelligence, Springer, 2009, pp. 181–197.
[27] O. Hermant, A model-based cut elimination proof, in: 2nd St-Petersburg Days of

Logic and Computability, 2003.
[28] J. Barwise (Ed.), Handbook of Mathematical Logic, 4th Edition, Elsevier Science

Publishers B. V. (North-Holland), 1985.
[29] J. Endrullis, H. Geuvers, H. Zantema, Degrees of undecidability in term rewriting,

in: E. Grädel, R. Kahle (Eds.), CSL, Vol. 5771 of Lecture Notes in Computer Science,
Springer, 2009, pp. 255–270.

[30] N. Dershowitz, C. Kirchner, Abstract saturation-based inference., in: LICS, IEEE
Computer Society, 2003, pp. 65–74.

[31] N. Dershowitz, Orderings for term-rewriting systems, Theoretical Computer Science
17 (1982) 279–301.

[32] J.-Y. Girard, Y. Lafont, P. Taylor, Proofs and Types, Vol. 7 of Cambridge Tracts in
Theoretical Computer Science, Cambridge University Press, 1989.

[33] O. Hermant, Semantic cut elimination in the intuitionistic sequent calculus., in:
P. Urzyczyn (Ed.), TLCA, Vol. 3461 of LNCS, Springer, 2005, pp. 221–233.

[34] G. Dowek, B. Werner, Proof normalization modulo, The Journal of Symbolic Logic
68 (4) (2003) 1289–1316.

[35] M. Aiguier, C. Boin, D. Longuet, On generalized theorems for normalization of
proofs, Tech. rep., LaMI - CNRS and Université d’Evry Val d’Essonne (2005).

[36] M. Fitting, First-order logic and automated theorem proving (2nd ed.), Springer,
Secaucus, NJ, USA, 1996.

[37] G. Dowek, T. Hardin, C. Kirchner, HOL-λσ an intentional first-order expression
of higher-order logic, Mathematical Structures in Computer Science 11 (1) (2001)
1–25.

[38] G. Dowek, B. Werner, Arithmetic as a theory modulo, in: J. Giesl (Ed.), RTA, Vol.
3467 of LNCS, Springer, 2005, pp. 423–437.

[39] G. Burel, A first-order representation of pure type systems using superdeduction,
in: F. Pfenning (Ed.), LICS, IEEE Computer Society, 2008, pp. 253–263.

38

Contents

1 Introduction 2

2 Deduction modulo 5
2.1 Rewritings 5

2.2 Sequent Calculi Modulo 6

3 Undecidability of the cut admissibility 12
4 Construction of a rewrite system compatible with a theory 14

4.1 Desired properties 14

4.2 An Algorithm . . . 15
4.3 . . . with the Good Properties 17

5 Abstract Completion for Cut Admissibility 20

5.1 Abstract Canonical Systems and Inference 20
5.2 Deduction Modulo is an Instance of ACS 23

5.3 A Generalized Completion Procedure 26
6 Examples 32

7 Conclusion and Perspectives 35

39

