
Unbounded Proof-Length Speed-up in
Deduction Modulo

Guillaume Burel1

1 Université Henri Poincaré & LORIA2

Campus scientifique BP 239 — 54506 Vandœuvre-lès-Nancy Cedex France
guillaume.burel@ens-lyon.org

2
UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP

Abstract. In 1973, Parikh proved a speed-up theorem conjectured by
Gödel 37 years before: there exist arithmetical formulæ that are provable
in first order arithmetic, but whose shorter proof in second order arith-
metic is arbitrarily smaller than any proof in first order. On the other
hand, resolution for higher order logic can be simulated step by step in
a first order narrowing and resolution method based on deduction mod-
ulo, whose paradigm is to separate deduction and computation to make
proofs clearer and shorter.
We prove that i+1-th order arithmetic can be linearly simulated into i-th
order arithmetic modulo some confluent and terminating rewrite system.
We also show that there exists a speed-up between i-th order arithmetic
modulo this system and i-th order arithmetic without modulo. All this
allows us to prove that the speed-up conjectured by Gödel does not
come from the deductive part of the proofs, but can be expressed as
simple computation, therefore justifying the use of deduction modulo as
an efficient first order setting simulating higher order.

Key words: proof theory, rewriting, higher order logic, arithmetic

1 Introduction

Even if two logical systems are shown to be expressively equivalent, i.e. they
can prove exactly the same formulæ, they can lead to very different proofs, in
particular in terms of length. For instance, it is shown that Frege systems have
an exponential speed-up over resolution for propositional logic [5]. However in
mechanized theorem proving, the length of proofs has an importance: First,
computers have limited capacities, and this can lead to a difference between the
practical expressiveness of theoretically equivalent systems. Even if computing
power is always increasing, so that one is no longer afraid to use SAT-solvers
within verification tools (mainly because worst cases do not often occur in prac-
tice), it is not conceivable to build an automated theorem prover that produces
proofs of non-elementary length. Second, the length of a proof is one (among
others) criterion for defining the quality of a proof. Indeed, a smaller proof is
often more readable and, in the case for instance of software certification and

2 G. Burel

proof engineering, more communicable and often also more maintainable. In [10,
2], this notion of “good proofs” is translated through a proof ordering, which of
course may correspond to the comparison of proof lengths.

Obtaining a speed-up can also have a theoretical interest, because, as re-
marked by Parikh in the introductory paragraph of [16], “the celebrated P=NP?
question can itself be thought of as a speed-up question.” (See [7].) All this ex-
plains the research for new formalisms whose deductive systems provide smaller
proofs, such as for instance the calculus of structures w.r.t. the sequent calcu-
lus [17].

In this paper, the length of a proof will correspond to its number of steps
(sometimes called lines), whatever the actual size of the formulæ appearing in
them is. Considering only the minimal length of proofs, the definition of a speed-
up is the following: given some function h over natural numbers, a system has a
speed-up for h over another one, if there exists an infinite set of formulæ provable
in both of them, such that, if the length of the proofs in the first system is l and
the length in the second system is k, then k > h(l).

In 1936, Gödel [16] conjectured that there exists such a speed-up for all
recursive functions between i-th order and i + 1-th order arithmetic, no matter
the formal system actually used. In other words, he stated that for all recursive
functions h, it is possible to find an infinite set of formulæ such that, for each
of them, denoted by P , if k is the minimal number of steps in the proofs of P
in the i-th order arithmetic (k is assumed to exist, so that P is provable in it),
and l is the minimal number of steps in the proofs of P in the i + 1-th order
arithmetic, then k > h(l).

This result was proved for first-order arithmetic by Parikh [21], who actually
proved a stronger theorem: this proof-length speed-up exists in fact also for non-
recursive functions. This was generalized to all orders by Kraj́ıček , and was
proved for the true language of arithmetic by Buss [6] (the former results used
an axiomatization of arithmetic using ternary predicates to represent addition
and multiplication). The theorem proved by Buss is stated as follow:

Theorem 1 ([6, Theorem 3]). Let i ≥ 0. Then there is an infinite family F
of

∏0
1-formulæ such that

1. for all P ∈ F , Zi ` P
2. there is a fixed k ∈ N such that for all P ∈ F , Zi+1 k steps P
3. there is no fixed k ∈ N such that for all P ∈ F , Zi k steps P .

Zi corresponds to the i+1-th order arithmetic (so Z0 is in fact first order arith-
metic), and Zi k steps P means that P can be proved in at most k steps within a
schematic system —i.e. a Hilbert-type (or Frege) system with a finite number of
axiom schemata and inference rules— for i+1-th order arithmetic. (In fact, Buss
proved this theorem also for weakly schematic systems, i.e. schematic systems
in which every tautology can be used as an axiom, as well as generalizations of
axioms, but we will not use this fact here.)

Because this theorem is concerned in arithmetic, an intuitive notion of com-
putation take place in the proofs. Indeed, as remarked by Poincaré, establishing

Unbounded Proof-Length Speed-up in Deduction Modulo 3

that 2+2 = 4 using the definition of the addition is just a verification, and not a
demonstration, so that in a proof occur in fact not only pure deduction but also
computation. Therefore, the question arises whether this speed-up comes from
the deductive or the computational part of the proofs, or both of them. Of course,
the difference between computation and deduction cannot be clearly determined.
Because of the Curry-Howard correspondence, the whole content of the proofs
could be considered as computation. Here, this difference must be thought of as
the distinction between what is straightforward (at least decidable), and what
must be reasoned out.

Deduction modulo [12] is a presentation of a given logic —and the formalisms
associated with it— identifying what corresponds to computation. The compu-
tational part of a proof is put in a congruence between formulæ modulo whom
the application of the deduction rules takes place. This leads to the sequent
calculus modulo and the natural deduction modulo. The congruence is better
represented as a set of rewrite rules that can rewrite terms but also atomic propo-
sitions: indeed, one wants for instance to consider the definition of the addition
or multiplication using rewrite rules over terms as part of the computation, but
also the following rewrite rule:

x× y = 0 → x = 0 ∨ y = 0
which rewrites an atomic proposition to a formula, so that the following simple
proof of t× t = 0 can be deduced from a proof π of t = 0:

π
t = 0∨-i t× t = 0 −→ t = 0 ∨ t = 0

t× t = 0

Deduction modulo is logically equivalent to the considered logic [12, Propo-
sition 1.8], but proofs are often considered as simpler, because the computation
is hidden, letting the deduction clearly appear. Proofs are also claimed to be
smaller for the same reason. Nevertheless, this fact was never quantified. This
paper answers this issue. Of course, if there are no restriction on the rewrite
rules that are used (for instance if it is allowed to use a rewrite system semi-
deciding the validity of formulæ), it is not surprising that the length of the proofs
can be unboundedly reduced. Notwithstanding, we will consider in this paper
only very simple rewrite systems: they will be finite, terminating, confluent (i.e.
deterministic) and linear (variables in the left-hand side only appear once).

Besides, it is possible, in deduction modulo, to build proofs of Higher Order
Logic using a first order system [11]. Using this, a step of higher order resolution
is completely simulated by a step of ENAR, the resolution and narrowing method
based on deduction modulo. Therefore, it seems reasonable to think that deduc-
tion modulo is able to give the same proof-length speed-ups as the ones occurring
between i+1-th and i-th order arithmetic. This paper therefore investigates how
to relate proof-length speed-ups in arithmetic with the computational content
of the proofs.

To prove that the speed-up theorem of Buss comes from the computational
part of the proofs, we first define a linear translation between proofs in i+1-th

4 G. Burel

order arithmetic and i-th order arithmetic modulo some rewrite system Ri.
Second, using this translation and Buss’ theorem, we prove that there is no
proof-length speed-up between i+1-th order arithmetic and i-th order arithmetic
modulo, whereas there exists such a speed-up between i-th order arithmetic
modulo and i-th order arithmetic without modulo. Therefore, we conclude that
the speed-up between i + 1-th order arithmetic and i-th order arithmetic lies in
the modulo, i.e. the computational part of the proofs.

In the next section, we will recall the definition of a schematic system, and
we will present such a system for i-th order arithmetic. The section 3 will define
formally what deduction modulo, and in particular natural deduction modulo
consists of. In Section 4 we will give the exact translations between a proof in
the schematic system for i-th order arithmetic and a proof in natural deduction,
modulo or not, as well as the simulation in natural deduction of i + 1-th order
arithmetic in i-th order arithmetic modulo. An upper bound of the increase
in the length of the proofs due to these translations will be given. Finally, in
Section 5 we will use these translations to determine the origin of the speed-up
in arithmetic, and we will conclude about the interest of working within a first-
order system modulo to simulate higher order. All the details can be found in
the full version of this paper [4].

2 A Schematic System for i-th Order Arithmetic

2.1 Schematic Systems

We recall here, using Buss’ terminology [6], what a schematic system consists
in. It is essentially an Hilbert-type (or Frege) proof system, i.e. valid formulæ
are derived from a finite number of axiom schemata using a finite number of
inference rules. Theorem 1 is true on condition that proofs are performed using
a schematic system.

First, we recall how to build many-sorted first order formulæ, mainly to
introduce the notations we will use. A (first order) many-sorted signature consists
in a set of function symbols and a set of predicates, all of them with their arity
(and co-arity for function symbols). We denote by T (Σ,V) the set of terms built
from a signature Σ and a set of variables V . An atomic proposition is given by
a predicate symbol A of arity [i1, . . . , in] and by n terms t1, . . . , tn ∈ T (Σ,V)
with matching sorts. It is denoted A(t1, . . . , tn). Formulæ can be built using the
following grammar3:

P != ⊥ | A | P ∧ P | P ∨ P | P ⇒ P | ∀x. P | ∃x. P

where A ranges over atomic propositions and x over variables. P ⇔ Q will
be used as a syntactic sugar for (P ⇒ Q) ∧ (Q⇒ P). Positions in a term or
a formula, free variables and substitutions are defined as usual (see [1]). The

3 !
= is used for definitions.

Unbounded Proof-Length Speed-up in Deduction Modulo 5

replacement of a variable x by a term t in a formula P is denoted by {t/x}P , the
restriction of a term or proposition t at the position p by t|p, and its replacement
in t by a term or proposition s by t[s]p.

Then, given a many-sorted signature of first order logic, we can consider
infinite sets of metavariables αi for each sort i (which will be substituted by
variables), of term variables τ i for each sort i (which will be substituted by
terms) and proposition variables A(x1, . . . , xn) for each arity [i1, . . . , in] (which
will be substituted by formulæ).

Metaterms are built like terms, except that they can contain metavariables
and term variables. Metaformulæ are built like formulæ, except that they can
contain proposition variables (which play the same role as predicates) and
metaterms.

A schematic system is a finite set of inference rules, where an inference rule
is a triple of a finite set of metaformulæ (the premises), a metaformulæ (the
conclusion), and a set of side conditions of the forms αj is not free in Φ or s is
freely substitutable for αj in Φ where Φ is a metaformula and s a metaterm of
sort j. It is denoted by

Φ1 · · · Φn (R)
Ψ

An inference with an empty set of premises will be called an axiom schema.

2.2 i-th Order Arithmetic

i-th order arithmetic (Zi−1) is a many-sorted theory with the sorts 0, . . . , i − 1
and the signature

0 : 0 + : [0; 0]→ 0 = : [0; 0]
s : [0]→ 0 × : [0; 0]→ 0 ∈j : [j; j + 1] .

The schematic system we use can be found in its totality in the full version [4].
The most representative inference rules are given here as examples:

14 + 2× i axiom schemata of classical logic. We take the one used by
Gentzen [15, Chapter 5] to prove the equivalence of his formalisms with an
Hilbert-type proof system:

(A⇒ A⇒ B)⇒ A⇒ B (1)
(A⇒ B)⇒ (B ⇒ C)⇒ A⇒ C (2)

(A ∧B)⇒ A (3)
A(τ j)⇒ ∃αj . A(αj)

(
τ j is freely substitutable for αj in A(αj)

)
(4)

A ∨ (A⇒ ⊥) (5)

1 + 2× i inference rules of classical logic. Again, we consider the one of [15]:

A A⇒ B
B

(6)

B(βj)⇒ A
(βj is not free in (∃αj . B(αj))⇒ A)

(∃αj . B(αj))⇒ A
(7)

6 G. Burel

7 identity axiom schemata. They define the particular relation =:

∀α0. α0 = α0 (8)
∀α0β0γ0. α0 = β0 ⇒ α0 + γ0 = β0 + γ0 (9)
∀α0β0. α0 = β0 ⇒ A(α0)⇒ A(β0) (10)

7 Robinson’s axioms. They are the axioms defining the function symbols of
arithmetic [19]:

∀α0β0. s(α0) = s(β0)⇒ α0 = β0 (11)
∀α0. α0 × 0 = 0 (12)

∀α0β0. α0 × s(β0) = α0 × β0 + α0 (13)

i + 1 induction and comprehension axiom schemata.

A(0)⇒
(
∀β0. A(β0)⇒ A(s(β0))

)
⇒ ∀α0. A(α0) (14)

For all 0 ≤ j < i− 1,

∃αj+1. ∀βj . βj ∈j αj+1 ⇔ A(βj) (αj+1 is not free in A) (15)

From this point on, we will denote by Zi−1
S
k P the fact that there exists a

proof of P of length at most k in this schematic system, i.e. P can be derived
using at most k instances of these inference rules.

3 Deduction Modulo

3.1 Rewriting Formulæ

In this section, we recall the definition of deduction modulo, as can be found in
[12, 13]. In deduction modulo, formulæ are considered modulo some congruence
defined by some rules that rewrite not only terms but also formulæ. We use
standard definitions, as can be found in [1], and extend them to proposition
rewriting [12].

A term rewrite rule is the pair of terms l, r such that all free variables of r
appear in l. It is denoted l → r. A term rewrite system is a set of term rewrite
rules. A term s can be rewritten to a term t by a term rewrite rule l → r if
there exists some substitution σ and some position p in s such that σl = s|p and
t = s[σr]p. An atomic proposition A(s1, . . . , si, . . . , sn) can be rewritten to the
atomic proposition A(s1, . . . , ti, . . . , sn) by a term rewrite rule l→ r if si can be
rewritten to ti by l→ r. This relation is extended by congruence to all formulæ.

A proposition rewrite rule is the pair of an atomic proposition A and a formula
P , such that all free variables of P appear in A. It is denoted A → P . A
proposition rewrite system is a set of proposition rewrite rules. A formula Q
can be rewritten to a formula R by a proposition rewrite rule A → P if there

Unbounded Proof-Length Speed-up in Deduction Modulo 7

[A]

B⇒-i if C
∗←→
R

A⇒ B
C

A C⇒-e if C
∗←→
R

A⇒ B
B

A B∧-i if C
∗←→
R

A ∧ B
C

C∧-e if C
∗←→
R

A ∧ B or C
∗←→
R

B ∧ A
A

A∨-i if C
∗←→
R

A ∨ B or C
∗←→
R

B ∨ A
C C

[A]

D

[B]

D∨-e if C
∗←→
R

A ∨ B
D

{y/x}A
∀-i

if B
∗←→
R
∀x. A and y is not

free in A nor in the assump-
tions of the proof above

B

A∀-e if A
∗←→
R
∀x. C and B

∗←→
R
{t/x}C

B

B∃-i if A
∗←→
R
∃x. C and B

∗←→
R
{t/x}C

A B

[{y/x}A]

C∃-e

if B
∗←→
R
∃x. A and y is

not free in C nor in the
assumption of the proof
above except {y/x}AC

classical if A
∗←→
R

B ∨ (B ⇒ ⊥)
B

A⊥-e if A
∗←→
R
⊥

B

Fig. 1. Inference Rules of Natural Deduction Modulo.

exists some substitution σ and some position p in Q such that σA = Q|p and
R = Q[σP]p. Semantically, this proposition rewrite relation must be seen as a
logical equivalence between formulæ.

A rewrite system is the union of a term rewrite system and a proposition
rewrite system. The fact that P can be rewritten to Q either by a term or by a
proposition rewrite rule of a rewrite system R will be denoted by A−→

R
P . The

transitive (resp. reflexive transitive) closure of this relation will be denoted by
∗−→
R

(resp. ∗←→
R

).

3.2 Natural Deduction Modulo

Using some equivalence ∗←→
R

defined by a rewrite systemR, we can define natural

deduction modulo as in [13]. Its inference rules are represented in Fig. 1. They
are the same as the one introduced by Gentzen [15], except that we work modulo
the rewrite relation. Leaves of a proof that are not introduced by some inference
rules (contrary to A in ⇒-i for instance) are the assumptions of the proof. Note
that if we do not work modulo, ⇒-e is exactly the same as (6).

The length of a proof is the number of inferences used in it. We will denote by
T N

k R P the fact that there exists a proof of P of length at most k using a finite
subset of T (T can be infinite) as assumptions. In the case where R = ∅, we are
back to pure natural deduction, and we will use T N

k P . Abusing notations, we
will write Zi

N
k R P to say that there is a proof of P of length at most k using

as assumptions a finite subset of instances of the axiom schemata (8) to (15).

8 G. Burel

4 Translations

4.1 From Zi
S to Zi

N

We want to translate a proof in the schematic system of Zi into a proof in pure
natural deduction using as assumptions instances of the axiom schemata (8)
to (15).

For the axiom schemata and inference rules of classical logic, we use the same
translation as Gentzen, for instance the axiom schema (4) is translated into the
natural deduction proof

A(τ j) (i)
∃-i
∃αj . A(αj)

⇒-i (i)
A(τ j)⇒ ∃αj . A(αj)

and the inference rule (7) into

∃αj . B(αj) (i)

B(βj) (ii) B(βj)⇒ A
⇒-e

A
∃-e (ii)

A⇒-i (i)
∃αj . B(αj)⇒ A

(note that the side condition ensures that it is possible to consider that what
will be substituted for βj is free in A and the assumptions of the proof above
B(βj)⇒ A). All these inference rules have a translation whose length does not
depend on the formulæ finally substituted in the proof.

In a schematic system proof, there is also a finite number of instances of the
axioms schemata for identity, Robinson’s axioms and induction and comprehen-
sion schemata. We keep these instances as assumptions in natural deduction,
so that we obtain a proof in natural deduction using as assumptions a finite
subset of instances of the axiom schemata (8) to (15), and whose length is linear
compared to the schematic system proof:

Proposition 1. It is possible to translate a proof of length n in the schematic
system for Zi into a proof of length O(n) in (pure) natural deduction using
assumptions in Zi.

Zi
S
k P Zi

N
O(k) P

4.2 From Zi
N to Zi

S

In this section, we consider a proof of P in natural deduction, using as assumption
finite instances of (8) to (15) in the language of Zi. We translate it into a proof
in the schematic system for Zi.

This is essentially a generalization of the translation from the λ-calculus to
combinatory logic (see [9]). We define mutually recursively two functions by
induction on the inference rules: T transforms a proof of P in natural deduction
using assumptions Γ into a proof of P in the schematic system (1) to (7) plus
Γ . TA transform a proof of P in natural deduction using assumptions Γ,A into
a proof of A⇒ P in the schematic system (1) to (7) plus Γ .

Unbounded Proof-Length Speed-up in Deduction Modulo 9

Due to lack of space, the definition of T and TA is given here only for the ex-
istential quantifier, but can be entirely found in the full version of this paper [4].

T

0@ π

{t/x}A
∃-i ∃x. A

1A !
=

T (π)

{t/x}A {t/x}A ⇒ ∃x. A (4)
(6)

∃x. A

T

0@ π1

∃x. A

[{y/x}A]
π2{

B∃-e
B

1A !
=

T (π1)

∃x. A

TA (π2)

{y/x}A ⇒ B
(7)

(∃x. A) ⇒ B
(6)

B

TA

0@ [A]
π{

{t/x}B
∃-i ∃x. B

1A !
=

{t/x}B ⇒ ∃x. B (4)

TA (π)

A ⇒ {t/x}B · · · (2)
(6)

({t/x}B ⇒ ∃x. B) ⇒ A ⇒ ∃x. B
(6)

A ⇒ ∃x. B

TA

0@ [A]
π1{ ∃x. B

[A, {y/x}B]
π2{

C∃-e
C

1A !
=

T{y/x}B

„
TA (π2)
A ⇒ C

«
{y/x}B ⇒ A ⇒ C

(7)
∃x. B ⇒ A ⇒ C

TA (π1)

A ⇒ ∃x. B · · · (2)
(6)

(∃x. B ⇒ A ⇒ C) ⇒ A ⇒ A ⇒ C
(6)

A ⇒ A ⇒ C · · · (1)
(6)

A ⇒ C

It can be verified that this definition transforms a proof of size n into a
proof of size O(3n). Due to [7, Corollary 3.4], we could have found, at least
for the propositional part, a polynomial translation. Nevertheless all we need in
this paper is the fact that the increase of the proof length in the translation is
bounded.

Proposition 2. It is possible to translate a proof of length n in the (pure)
natural deduction using assumptions in Zi into a proof of length O(3n) in the
schematic system for Zi.

Zi
N
k P Zi

S
O(3k)

P

4.3 From Zi+1
S and Zi+1

N to Zi
N

Ri

This time, we translate a proof in the schematic system for Zi+1 into a proof in
natural deduction modulo using as assumption instances of the axiom schemata
(8) to (15), but in the language of Zi. The point is that, using modulo, it is
possible to downshift an order.

10 G. Burel

We follow the translation of Section 4.1, except for the axiom schemata (10),
(14) and (15) that are instantiated by formulæ that are in the language of Zi+1

but not in the language of Zi. To translate these schemata, we will use the work
of F. Kirchner [18] which permits to express first-order theories using a finite
number of axioms. The idea is to transform some metaformula A(t1, . . . , tn) used
in an axiom schema into a formula of the form 〈t1, . . . , tn〉 ε γ where γ will be
some term representing what formula will be actually substituted for A.

Following F. Kirchner’s method, we add new sorts ` for lists and c for classes,
as well as new function symbols and predicate

1j : j
Sj : [j]→ j
·[·]j : [j; `]→ j

nil : `
::j : [j; `]→ `
.= : [0; 0]→ c

∈̇j : [j; j + 1]→ c

∪ : [c; c]→ c
∩ : [c; c]→ c
⊃ : [c; c]→ c

∅ : c
Pj : [c]→ c
Cj : [c]→ c
ε : [`; c]

.

〈α1, . . . , αn〉 will be syntactic sugar for α1 ::j1 · · · :: αn ::jn nil for the appropriate
jm. We change the axiom schemata (10), (14) and (15) into the following axioms:

∀γc. ∀α0β0. α0 = β0 ⇒ 〈α0〉 ε γc ⇒ 〈β0〉 ε γc (16)
∀γc.〈0〉 ε γc ⇒

(
∀β0. 〈β0〉 ε γc ⇒ 〈s(β0)〉 ε γc

)
⇒ ∀α0. 〈α0〉 ε γc (17)

For all 0 ≤ j < i,

∀γc. ∃αj+1. ∀βj . βj ∈j αj+1 ⇔ 〈βj〉 ε γc (18)

The rewrite system Ri is then the following:

t[nil]j → t
1j [t ::j l]j → t

Sj(n)[t ::j l]j → n[l]j

s(n)[l]0 → s(n[l]0)
(t1 + t2)[l]0 → t1[l]0 + t2[l]0

(t1 × t2)[l]0 → t1[l]0 × t2[l]0

l ε
.= (t1, t2) → t1[l]0 = t2[l]0

l ε ∈̇j(t1, t2) → t1[l]j ∈j t2[l]j+1

l ε A ∪B → l ε A ∨ l ε B
l ε A ∩B → l ε A ∧ l ε B
l ε A ⊃ B → l ε A⇒ l ε B

l ε ∅ → ⊥
l ε Pj(A) → ∃x. x ::j l ε A
l ε Cj(A) → ∀x. x ::j l ε A

Note that this system is finite, terminating (either the size of a list decreases, or
else a ·[·] or an ε goes more inside or disappears), confluent (the only critical pairs,
of the form: f(t1, . . . , tn)←−

Ri

f(t1, . . . , tn)[nil]−→
Ri

f(t1[nil], . . . , tn[nil]), are eas-

ily joinable), and linear (variables appears only once in the left hand side of the
rewrite rules).

Proposition 2 of [18] says that it is possible, for any formula P of the lan-
guage of i-th order arithmetic, to prove ∃E. ∀x1 · · ·xn. 〈x1, . . . , xn〉 ε E ⇔ P .
Moreover, the proof of this proposition shows us how to construct the witness E.
We will denote it by Ex1,...,xn

P . Then, one can prove that 〈t1, . . . , tn〉 ε Ex1,...,xn

P
∗−→
Ri

{t1/x1, . . . , tn/xn}P . For instance, consider the formula x = 0 ∨ ∃y. x ∈0 y,

which will be denoted by P . Then Ex
P equals .= (1, S(0)) ∪ P1

(
∈̇0(S(1), 1)

)
and 〈t〉 ε Ex

P can be rewritten to t = 0 ∨ ∃x. t ∈0 x.

Unbounded Proof-Length Speed-up in Deduction Modulo 11

∀γc. ∀α0β0. α0 = β0 ⇒ 〈α0〉 ε γc ⇒ 〈β0〉 ε γc
(16)

∀-e
〈α0〉 ε Ex

A ⇒ 〈β
0〉 ε Ex

A
∗−→
Ri

A(α0)⇒ A(β0)∀α0β0. α0 = β0 ⇒ A(α0) ⇒ A(β0)

∀γc.〈0〉 ε γc ⇒
`
∀β0. 〈β0〉 ε γc ⇒ 〈s(β0)〉 ε γc

´
⇒ ∀α0. 〈α0〉 ε γc

(17)
∀-e

for all t,
〈t〉 ε Ex

A
∗−→
Ri

A(t)A(0) ⇒
`
∀β0. A(β0) ⇒ A(s(β0))

´
⇒ ∀α0. A(α0)

∀γc. ∃αj+1. ∀βj . βj ∈j αj+1 ⇔ 〈βj〉 ε γc
(18)

∀-e 〈βj〉 ε Ex
A

∗−→
Ri

A(βj)

∃αj+1. ∀βj . βj ∈j αj+1 ⇔ A(βj)

Fig. 2. Translations of the axiom schemata (10), (14) and (15).

Consequently, the axiom schemata (10), (14) and (15) for formulæ of the
language of Zi+1 but not in the language of Zi are replaced by the proofs in Fig. 2.
In these translations, we need to instantiate γc with some Ex

A. It is well-known
that the instantiations are the most problematic rules in deductive systems,
at least for automated provers (e.g. they are what leads to nondeterminism
and/or nontermination of tableaux methods for first order logic), because the
instantiated term must be somehow guessed. Nevertheless, the instantiation here
is entirely and automatically determined by the formula used in the schema, so
that no harm is done.

Using this, a proof in the schematic system for Zi+1 can be translated into
a proof of P in natural deduction modulo Ri using as assumptions the axioms
(10), (14) and (15) as well as a finite subset of instances the axiom schemata (8)
to (15) for i-th order arithmetic, and whose length is linear compared to the
schematic system proof:

Proposition 3. It is possible to translate a proof of length n in the schematic
system for Zi+1 into a proof of length O(n) in the natural deduction modulo Ri

using assumptions in Zi, (16), (17) and (18).

Zi+1
S
k P Zi, (16), (17), (18) N

O(k) Ri
P

This result can also be stated entirely in natural deduction

Theorem 2. For all i ≥ 0, there exists a (finite) rewrite system Ri and a finite
set of axioms Γ such that for all formulæ P , if Zi+1

N
k P then Zi, Γ

N
O(k) Ri

P .

Proof. Let Γ be {(16), (17), (18)}. We replace the instance of the axiom schemata
(10), (14) and (15) by the axioms (16), (17) and(18) as indicated in Fig. 2. ut

Note that, contrarily to HOL-λσ which permits to simulate Higher Order
Logic, the rewrite system purposed here is finite and terminating.

The fact to add the finite set of axioms Γ could be seen as some deceit,
because we do not work really in Zi, but in a theory strictly stronger. By the way,
due to Theorem 2, it is possible to prove the consistency of Zi in Zi, Γ modulo

12 G. Burel

Ri. Nevertheless, the point here is that it is possible, by working modulo Ri,
to simulate Zi+1 using a finite set of axioms, and not axiom schemata, without
exploding the length of the proofs. If we were not working modulo this rewrite
system, but using a finite theory compatible with it (i.e. proving exactly the
same formulæ), then it would not be possible to give a bound to the translation:

Proposition 4. For all i ≥ 0, for all finite theories Ti compatible with Ri, there
is an infinite family F such that

1. for all P ∈ F , Zi, Γ, Ti
S P

2. there is a fixed k ∈ N such that for all P ∈ F , Zi+1
S
k steps P

3. there is no fixed k ∈ N such that for all P ∈ F , Zi, Γ, Ti
S
k steps P .

It could also have been possible to translate the formulæ that one wants to
prove, as is done in [14], where a formula of first order arithmetic is transformed
by adding the information that some variable n is an integer using some predicate
N(n) which can be rewritten into an axiom corresponding to the induction
schema for first order arithmetic. Here, P could be translated into (16)⇒ (17)⇒
(18)⇒ P .

5 Application to Speed-ups in Arithmetic

5.1 Bypassing Buss’ Speed-up using Modulo

The goal of this section is to prove that one can work in Zi modulo some rewrite
systemRi to be able to build proof as small as the one of Zi+1. Indeed, Theorem 2
permits to show that Gödel’s theorem does not extend if one works modulo Ri

(what is formulated here in a positive way):

Corollary 1 (of Theorem 2). For all i ≥ 0, there exists a (finite) rewrite
system Ri and a finite set of axioms Γ such that for all infinite family F of∏0

1-formulæ, if

– for all P ∈ F , Zi
N P

– there is a fixed k ∈ N such that for all P ∈ F , Zi+1
N
k steps P

then there is a fixed k′ ∈ N such that for all P ∈ F , Zi, Γ
N
k′ steps Ri

P .

5.2 Speed-up Due to Computation

On the contrary, we want to show that it is possible to achieve the same speed-
up as the one between i-th order and i + 1-th order arithmetic just by working
modulo some rewrite system in i-th order arithmetic:

Theorem 3. For all i ≥ 0, there is a rewrite system Ri such that there is an
infinite family F such that

1. for all P ∈ F , Zi
N P

Unbounded Proof-Length Speed-up in Deduction Modulo 13

2. there is a fixed k ∈ N such that for all P ∈ F , Zi
N
k steps Ri

P

3. there is no fixed k ∈ N such that for all P ∈ F , Zi
N
k steps P .

Proof. The rewrite systemRi is the one defined in Section 4.3. Let F be the fam-
ily of formulæ obtained by Theorem 1. Let F ′ != {(16)⇒ (17)⇒ (18)⇒ P :
P ∈ F}. Then:

1. For all P ′ ∈ F ′, Zi
N P ′: we know that Zi

S P , therefore using Proposition 1,
Zi

N P and, adding to this proof 2 + i times ⇒-i, Zi
N P ′.

2. There is a k such that for all P ′ ∈ F ′, Zi
N
k Ri

P ′: there exists some k such
that for all P ∈ F , Zi+1

S
k P . Using Proposition 3, there exists some K

such that for all P ∈ F , we have Zi, (16), (17), (18) S
K Ri

P and one can add
2 + i times ⇒-i to obtain a proof of P ′.

3. There is no k such that for all P ′ ∈ F ′, Zi
N
k P ′: Suppose by contradiction

that there is a k such that for all P ′ ∈ F ′, Zi
N
k P ′, then using 2 + i

times⇒-e, we have Zi, (16), (17), (18) N
k+2+i P . But (16), (17) and (18) use

function symbols not appearing in P nor Zi (for instance ε). Therefore they
cannot be used in a proof of P in Zi, so that in fact Zi

N
k+2+i P . Then,

using Proposition 2, Zi
S
O(3k)

P , and that will be in contradiction with the

fact that there is no K such that for all P , Zi
S
K P .

Schematically,

Zi+1
S
k P

Prop. 3
 Zi, (16), (17), (18) N

K Ri
P Zi

N
K+2+i Ri

P ′

Theo. 1 l

Zi
S
63k P

Prop. 1

Prop. 2

Zi, (16), (17), (18) N
6k P Zi

N
6k P ′ ut

Note that it is possible to get speed-ups in deduction modulo w.r.t pure
natural deduction with systems much more simpler than for higher order arith-
metic. (Take for instance the rule s(x) + y → x + s(y) and consider the formulæ
n+n = n + n where n denotes the usual representation of the natural number n
using 0 and s, for all natural numbers n.) Our last result however, combined with
Corollary 1, permits to conclude that proof-length speed-ups in arithmetic re-
sult from the computational part of the proofs, which is expressed by the rewrite
systems Ri.

6 Conclusion and Perspectives

We have first proved that it is possible to use some rewrite system to simulate
the difference between i-th and i+1-th order arithmetic at the condition to add
three extra axioms which replace the missing axiom schemata. This simulation
is linear in terms of proof length, which permits to prove that there is no proof-
length speed-up between i + 1-th order arithmetic and its simulation, on the

14 G. Burel

contrary to without modulo as it is expressed in Buss’ theorem. Furthermore,
this simulation allows to get the same proof speed-up for deduction modulo
over non modulo systems than the one of Buss’ theorem. Together with the
first result, this proves that the gap between i-th and i + 1-th order arithmetic
is in fact due to the computational part of the proofs. In this particular case,
we also clearly identify the computation occurring in the proofs with a finite,
terminating and confluent (so, in a sense, deterministic) rewrite system. This
is not surprising, because, if one looks carefully, the proof of Theorem 1 given
by Buss in [6] deeply relies on the fact that it is possible to define some truth
predicate for the formulæ of the preceding order. Therefore, in a sense, it is
possible, in i + 1-th order arithmetic, to compute the validity of a formula in
i-th order arithmetic.

Speed-ups in deduction modulo must not be considered as cheating, by hid-
ing part of the proofs in the congruence. This must be thought of as a way to
separate what is deduced and what is computed. To find a proof, both parts need
to be built. To check the proof however, only the deductive part is necessary,
because the rest can be effectively computed during the verification (hence the
need to have a decidable congruence, even better if it is determined by simple
deterministic algorithm). This can be applied to automated and interactive the-
orem proving, as well as in representation of proofs in natural language (where
all computational details are often implicitly left the reader).

These results are encouraging indicators that it is as good to work directly
in higher order logics, as is done in the current interactive theorem provers, such
as Coq [22] or Isabelle/HOL [20], or using a first order implementation of these
logics, as could be done in a proof assistant based on deduction modulo (or
on its sequel named superdeduction, see [3]). This paper gives clues to answer
positively this question, although we were interested in the step between i-th
order and i+1-th order arithmetic, and not between first order and higher order
logic. The fact that higher order resolution can be simulated step by step by
ENAR [11] is not a solution, because there may exist some other higher order
proof system that produce proofs that cannot be conveniently translated in a first
order system modulo. So, our next challenge will be, starting from the current
results, to investigate how exactly higher order logic prevails or not over first
order logic, by studying more closely the simulation of higher order logic.

A first direction to do so will be to prove that it is possible to apply tran-
sitivity between the simulation of Zi+1 in Zi and the one of Zi+2 in Zi+1, in
order to get a simulation of Zi+2 in Zi, for instance by combining Ri and Ri+1.
In addition to the expression of first order arithmetic as a theory modulo [14],
this would lead to the linear simulation of higher order arithmetic entirely as a
theory modulo. It should however be noted that one of the main advantage of
our rewrite systems w.r.t. HOL-λσ, i.e. its finiteness, will be lost because of the
need for a rule to decompose ∈̇i for all orders i.

Another direction would be to look directly at the difference of the lengths of
proofs in the expression of HOL in the sequent calculus modulo [11], or of every
PTS in λΠ modulo [8].

Unbounded Proof-Length Speed-up in Deduction Modulo 15

Acknowledgments. The author wishes to thank G. Dowek, T. Hardin, C. Kir-
chner and the anonymous referees for many discussions and comments about this
paper.

References

1. Baader, F., Nipkow, T.: Term Rewriting and all That . CUP (1998)
2. Bonacina, M.P., Dershowitz, N.: Abstract canonical inference. ACM Trans. Com-

put. Logic 8 (2007)
3. Brauner, P., Houtmann, C., Kirchner, C.: Principles of superdeduction. In: LICS.

IEEE Computer Society (2007) To appear.
4. Burel, G.: Unbounded proof-length speed-up in deduction modulo. Research report

(2007) Available at http://hal.inria.fr/inria-00138195.
5. Buss, S.R.: Polynomial size proofs of the propositional pigeonhole principle. The

Journal of Symbolic Logic 52 (1987) 916–927
6. Buss, S.R.: On Gödel’s theorems on lengths of proofs I: Number of lines and

speedup for arithmetics. The Journal of Symbolic Logic 59 (1994) 737–756
7. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.

The Journal of Symbolic Logic 44 (1979) 36–50
8. Cousineau, D., Dowek, G.: Embedding pure type systems in the lambda-pi-calculus

modulo. In: TLCA. (2007) To appear.
9. Curry, H.B., Feys, R., Craig, W.: Combinatory Logic. Vol. 1. Elsevier Science

Publishers B. V. (North-Holland), Amsterdam (1958)
10. Dershowitz, N., Kirchner, C.: Abstract Canonical Presentations. Theoretical Com-

puter Science 357 (2006) 53–69
11. Dowek, G., Hardin, T., Kirchner, C.: HOL-λσ an intentional first-order expression

of higher-order logic. Math. Structures Comput. Sci. 11 (2001) 1–25
12. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Auto-

mated Reasoning 31 (2003) 33–72
13. Dowek, G., Werner, B.: Proof normalization modulo. The Journal of Symbolic

Logic 68 (2003) 1289–1316
14. Dowek, G., Werner, B.: Arithmetic as a theory modulo. In: Giesl, J. (ed.): RTA.

Lecture Notes in Computer Science, Vol. 3467. Springer-Verlag (2005) 423–437
15. Gentzen, G.: Untersuchungen über das logische Schliessen. Mathematische

Zeitschrift 39 (1934) 176–210, 405–431 Translated in: Szabo, M.E. (ed.): The Col-
lected Papers of Gerhard Gentzen as “Investigations into Logical Deduction”.

16. Gödel, K.: On the length of proofs. In: Feferman, S., et al. (eds.): Kurt Gödel:
Collected Works. Vol. 1. Oxford University Press, Oxford (1986) 396–399

17. Guglielmi, A.: Polynomial size deep-inference proofs instead of exponential size
shallow-inference proofs. Av. at http://cs.bath.ac.uk/ag/p/AG12.pdf (2004)

18. Kirchner, F.: A finite first-order theory of classes. Available at http://www.lix.

polytechnique.fr/Labo/Florent.Kirchner/doc/fotc2006.pdf (2006)
19. Mostowski, A., Robinson, R.M., Tarski, A.: Undecidable Theories. Studies in Logic

and the Foundations of Mathematics. North-Holland, Amsterdam (1953)
20. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for

Higher-Order Logic. LNCS, Vol. 2283. Springer (2002)
21. Parikh, R.J.: Some results on the length of proofs. Transactions of the ACM 177

(1973) 29–36
22. The Coq Development Team: The Coq Proof Assistant Reference Manual. INRIA.

(2006) Version 8.0, available at http://coq.inria.fr/doc/main.html.

