Live-range Unsplitting for Faster Optimal
Coalescing

Sandrine Blazy* and Benoit Robillard

ENSIIE, CEDRIC

Abstract. Register allocation is often a two-phase approach: spilling of
registers to memory, followed by coalescing of registers. Extreme live-
range splitting (i.e. live-range splitting after each statement) enables op-
timal solutions based on ILP, for both spilling and coalescing. However,
while the solutions are easily found for spilling, for coalescing they are
more elusive. This difficulty stems from the huge size of interference
graphs resulting from live-range splitting.

This paper focuses on optimal coalescing in the context of extreme live-
range splitting. It presents some theoretical properties that give rise to an
algorithm for reducing interference graphs, while preserving optimality.
This reduction consists mainly in finding and removing useless splitting
points. It is followed by a graph decomposition based on clique separa-
tors. Any coalescing technique can be applied after these 2 optimizations.
Our 2 optimizations have been tested on a standard benchmark, the op-
timal coalescing challenge. For this benchmark, the cutting-plane algo-
rithm for optimal coalescing (the only optimal algorithm for coalescing)
runs 300 times faster when combined with our 2 optimizations. More-
over, we provide all the solutions of the optimal coalescing challenge,
including the 3 instances that were previously unsolved.

1 Introduction

Register allocation determines at compile time where each variable will be stored
at execution time: either in a register or in memory. Register allocation is often
a two-phase approach: spilling of registers to memory, followed by coalescing of
registers [3,9,15,7]. Spilling generates loads and stores for live variables! that
can not be stored in registers. Coalescing allocates unspilled variables to registers
in a way that leaves as few as possible move instructions (i.e. register copies).
Both spilling and coalescing are known to be NP-complete [23, 6].

Classically, register allocation is modeled as a graph coloring problem, where
each register is represented by a color, and each variable is represented by a
vertex in an interference graph. Given a number k of available registers, register
allocation consists in finding (if any) a k-coloring of the interference graph. When

* This work was supported by Agence Nationale de la Recherche, grant number ANR-
05-SSIA-0019.
1 A variable that may be potentially read before its next write is called a live variable.

there is no k-coloring, some variables are spilled to memory. When there is a k-
coloring, coalescing consists in choosing a k-coloring that removes most of the
move instructions.

ILP-based approaches have been applied to register allocation. Appel and
George formulate spilling as an integer linear program (ILP) and provide optimal
and efficient solutions [3]. Their process to find optimal solutions for spilling
requires live-range splitting, an optimization that enables a more precise register
allocation (e.g. avoiding to spill a variable everywhere). While the solutions are
easily found for spilling in this context, for coalescing they are more elusive.
Indeed, live-range splitting generates huge interference graphs (with many move
instructions) that make the coalescing harder to solve.

Splitting the live-range of a variable v consists in renaming v to different
variables having shorter live-ranges than v and adding move instructions con-
necting the variables originating from v. Recent spilling heuristics benefit from
live-range splitting: when a variable is spilled because it has a long live-range,
splitting this live-range into smaller pieces may avoid to spill v. If the live-range
of v is short, it is easier to store v in a register, as the register needs to hold the
value of v only during the live-range of v.

There exists many ways of splitting live-ranges (e.g. region splitting, zero
cost range splitting, load/store range analysis) [11,8,17,18,4,12,19]. Splitting
live-ranges often reduces the interferences with other live-ranges. Thus, most of
the splitting heuristics have been successful in improving the spilling phase. The
differences between these heuristics stem from the number of splitting points
(i.e. program points where live-ranges are split) as well as the sizes of the split
live-ranges. These heuristics are sometimes difficult to implement.

The most precise live-range splitting is extreme live-range splitting, where
live-ranges are split after each statement. Its main advantage is the preciseness
of the generated interference graph. Indeed, a variable is spilled only at the
program points where there is no available register for that variable. As in a
SSA form, each variable is defined only once. Furthermore, contrary to previous
heuristics, extreme live-range splitting is very easy to implement (it does not
require any further computation).

Extreme live-range splitting helps in finding optimal and efficient solutions
for spilling. But, it generates programs with huge interference graphs. Each re-
naming of a variable v to v results in adding a vertex in the interference graph
for v; and, consequently, some edges incident to that vertex. Thus, interference
graphs become so huge that coalescing heuristics often fail on big graphs. The
need for a better algorithm for the optimal coalescing problem gave rise to a
benchmark of interference graphs called the optimistic coalescing challenge [2].

Recently, Grund and Hack have formulated coalescing as an ILP [15]. They
introduce a cutting-plane algorithm that reduces the search space (i.e. the space
of potential solutions). Thus, their ILP formulation needs less time to compute
optimal solutions. As a result, they provide the first optimal and efficient solu-
tions of the optimal coalescing challenge. These solutions are 50% better than
the solutions computed by the best coalescing heuristics.

Grund and Hack conclude in [15] that their cutting-plane algorithm (and
more generally their reduction techniques) fails when applied to the biggest
graphs of the optimal coalescing challenge. Because of extreme live-range split-
ting (that was required for optimal spilling), optimal solutions for coalescing can
not be computed on these graphs. Owing to the extreme amount of copies, coa-
lescing is hard to solve optimally. In this paper, we answer to the last question
raised in [15]. We study the impact of extreme live-range splitting on coalescing
and provide two optimizations for reducing interference graphs before coalescing.

The first optimization identifies most of the splitting points that are not
useful for coalescing, and updates the graph consequently. After that, a second
optimization finds clique separators in the updated graph and thus decomposes
it into several subgraphs. Coalescing on each subgraph is then solved separately.
As the subgraphs are much smaller than the original graph, ILP solutions are
much easier and faster to find. Moreover, both optimizations do not break the
optimality of coalescing.

The remainder of this paper is organized as follows. Section 2 defines split
interference graphs, that are the interference graphs resulting from extreme live-
range splitting. Properties of these graphs are also given and reused in the next
section. Section 3 details the main contribution of this paper. We present our
two optimizations: a graph reduction followed by a graph decomposition.

Section 4 presents experimental results on the optimal coalescing challenge.
A first result is that our first optimization reduces the size of original graphs
(i.e. before extreme live-range splitting) by up to 10, and thus extreme live-
range splitting does not make coalescing harder anymore. A second result is
that Grund and Hack’s cutting-plane algorithm for optimal coalescing runs 300
times faster when combined with our optimizations, thus enabling to solve all
the instances of the optimal coalescing challenge, including the 3 instances that
were previously unsolved. Related work is discussed in section 5, followed by
concluding remarks in section 6.

2 Foundation

This section defines split interference graphs as well as some concepts from graph
theory.

Register allocation is performed on an interference graph. There are two kinds
of edges in an interference graph: interference (or conflict) edges and preference
(or affinity) edges. Two variables interfere if there exists a program point where
they are both simultaneously live, and if they may contain different values at
this program point. A preference edge between two variables represents a move
instruction between these variables (that should be stored in a same register
or at the same memory location). Weights are associated to preference edges,
taking into account the frequency of execution of the move instructions (but they
are ommitted in this paper).

Given a number k of registers, register allocation consists in satisfying all
interference edges as well as maximizing the sum of weights of preference edges

such that the same color is assigned to both extremities. Satisfying most of the
preference edges is the goal of register coalescing.

Interference graphs are built after a liveness analysis [10]. In an interference
graph, a variable is described by a unique live-range. Consequently, spilling a
variable means spilling it everywhere in the program, even if it could have been
spilled on a shorter live-range. Figure 1 illustrates this problem on a small pro-
gram consisting of a switch statement with 3 branches (see [20] for more details).
The program has 3 variables but only 2 variables are updated in each branch of
the switch statement. Thus, its corresponding interference graph is a 3-clique,
that is not 2-colorable, although only 2 registers are needed.

switch(...){
case 0: case 1: case 2:
lh:a:=... ly:a:=... l7 :b:= ...
lo:b:=... ls:c:= ... lg:c= ...
l3:...:=a+blg:...:=a+clg:...:=b+c
}

Fig. 1. Excerpt of a small program such that its interference graph is a 3-clique.

The usual way to overcome the previous problem is to perform live-range
splitting. Extreme live-range splitting splits live-ranges after each statement,
and thus generates some renamings that are not useful for coalescing. When v is
renamed to v; and vs, if after optimal coalescing v; and vo share a same color,
then the renaming of vs is useless: vy can be replaced by v, while preserving the
optimality of coalescing.

Moreover, the number of affinity edges blows up during extreme live-range
splitting since there is an affinity edge between any two vertices which represent
the same variable in two consecutive statements. Figure 2 shows the split inter-
ference graph of a small program given in [1]. In the initial interference graph,
each vertex represents a variable of the initial program (the array mem is stored in
memory); the preference edges correspond to both assignments d:=c and j:=b.

The bottom of figure 2 is an example of extreme live-range splitting. By
lack of space in the figure, only the beginning of the transformed program is
shown. The split interference graph is generated using the following process.
Every variable that is live and unchanged between program points p; and ps is
copied. A variable that should go dead at po is not copied. All the copies and
the statement are executed in parallel. This process is very similar to the one
described by Appel and George for the construction of the optimal coalescing
challenge. The difference between both processes is minor and has no influence
on the properties of split interference graphs that we use.

In other words, each live variable is renamed in parallel to each statement,
except if it is killed in this statement. For instance, k0, k1 and k2 are copies of k.
As k is live initially, it is renamed to k0 (and so is j). Similarly, g and j are live
at the exit of the first statement. Thus, they are renamed after that statement.

Edges corresponding to renamed variables are added in the split interference
graph. Preferences edges between renamed variables are also added, as well as
interference edges related to renamed variables. For instance, renaming j to 50
generates the preference edge j70. In the initial graph, the interference edge jk
corresponds to two interference edges in the split interference graph, because
there are two program points where j and k interfere.

Live-in : k j

g := mem[j+12]
h:=k-1
f:=g*h

e := mem[j+8§]
m := mem][j+16]
b := mem]f]

c:=e+8
d:=c¢

k :=m+4
j==>b
Live-out : d k
Live-in : k j

kO:=k | jO:=j | g := mem[j0 +
jl1:=40] g0:=g|h:=k0—1
j2:=31| f:=9¢0xh
fO:=fj3:=42| e:=mem[j3-
e0:=¢e| f1:= f0| m:=mem[j 4

Fig. 2. A small program and its interference graph (top). The same program after
extreme live-range splitting and its split interference graph (bottom). The end of the
second program is omitted in the figure.

The main drawback of extreme live-range splitting is that it generates huge
graphs. There are 2 kinds of affinity edges in a split interference graph: edges
representing coalescing behaviors, and edges added by variable renaming during
live-range splitting. A lot of affinity edges and vertices (as well as some associated
edges) corresponding to variable renaming are added in the graph. This section
gives 2 properties of these edges and vertices. They are useful for reducing the

graphs. The proofs of these properties are omitted in this paper. They are given
in a full technical report [5].

Clique. A clique of a graph G is a subgraph of G having an edge between every
pair of vertices. A clique is said to be mazimal if there is no clique containing it.

Interference connected component. Given a graph, an interference connected
component is a maximal set of vertices such that there exists a path (of inter-
ference edges) between any pair of its vertices.

Interference clique. An interference cliqueis a clique containing only interference
edges.

Theorem 1. After extreme live-range splitting, a statement corresponds to an
interference connected component of the split interference graph. Moreover, such
a component is an interference clique, that we call a statement clique.

Matching. A matching is a set of non-adjacent edges. A matching is maximum
if there is no matching having a strictly higher cardinal.

Affinity matching. An affinity matching is a matching consisting only of affinity
edges.

Parallel cliqgue, dominant and dominated cliques. Let Cy and and C3 be 2 max-
imal interference cliques. C7 dominates Cs if there exists an affinity matching
M such that :

1. M contains only edges having an extremity in Cj and the other in Cs,

2. each vertex of Cs is reached by M,

3. no edge of M has extremities precolored with different colors,

4. for each vertex v of Cs, the weight of the edge M that reaches v is greater
than or equal to the total weight of all others affinity edges reaching v.

We also say that C; and Cy are parallel cliques, Cy is a dominant clique and Co
is a dominated clique. Moreover, M is called a dominant matching.

Figure 3 shows a subgraph of he split interference graph given in figure 2. The
condition on the weights may seem to be very restrictive. Actually, it is not. The
weight of an affinity edge is often the middle part of the total weight of incident
affinity edges reaching its extremities. Indeed, the number of copy statements
does not change, except when entering in or exiting from a loop. Hence, many
dominations appear. The following property of dominated parallel cliques enables
us to remove the splitting points that have created this domination, without
worsening the quality of coalescing.

Theorem 2. If C; and Cy are two parallel cliques such that Cy dominates Cs,
then there exists an optimal coalescing coloring extremities of each edge of the
dominant matching with the same color.

Fig. 3. Some parallel cliques. The cliques {m1, b0, ¢} and {m2, b1, d} are iso-parallel.

3 Simplifying split interference graphs

In this section, we detail two optimizations for simplifying significantly the split
interference graphs resulting from spilling, and thus improving optimal coalesc-
ing. These optimizations do not affect the global quality of coalescing. The first
optimization reduces split interference graphs. The second optimization is per-
formed after the first one. It uses clique separators to decompose the graph into
several small subgraphs.

3.1 Size reduction using parallel cliques

The first optimization removes the splitting points that could have been useful for
spilling but that are useless for coalescing. This reduction relies on a subgraph,
called dominated parallel cliques, representing the splitting points that can be
removed from the program. This section details 2 algorithm that respectively
find dominated cliques and merge parallel cliques.

Finding dominated cliques A reduction rule arises from the theorem 2. Fur-
thermore, dominated cliques can be found in polynomial time. The algorithm 1
does it in O(kmc,), where mg, is the number of affinity edges having an ex-
tremity in Cj.

Induced graph. Let G be a graph and S a set of its vertices. The subgraph
induced by S is the graph such that its set of vertices is S and its edges are the
edges of G having both extremities in S.

Bipartite graph. A graph G is bipartite if there exists a partition (Vi,V3) of its
vertices such that every edge has an extremity in V; and the other in V5.

The first two loops of algorithm 1 compute E, the set of affinity edges that
may belong to a dominant matching. The first loop removes the edges that
cannot respect precoloring constraints, i.e. that have extremities precolored with

Algorithm 1 parallel cliques (C1,C5)

Require: Two maximal cliques C; and Cz
Ensure: A dominant matching M if C5 is dominated by C7, NULL otherwise

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

1:
2
3
4:
5:
6
7
8

9:
10:
11:
12:
13:
14:
15:
16:
17:

E := {affinity edges having an extremity in C; and the other in C5}
: delete every edge having extremities precolored with different colors from E
: for all color ¢ do
if there exist v1 € C1 and v2 € Cs both colored with ¢ then
if v1 and ve are linked with an affinity edge then
delete from E every affinity edge reaching vy or ve except (vi,v2)
else
return NULL
end if
end if
end for
for all v € C> do

Pref,weight(v) = ZzEPref,Neighbors(v) U)@Zght(,u’z)
end for
for all v € C> do
for all v’ such that (v,v') € E or (v',v) € E do
if weight(,) < %Pref,weight(v) and vy and ve are not precolored with
the same color then
delete (v,v") from E
end if
end for
end for
M := maximum matching included in FE
if cardinal(M) = number of vertices of C> then
return M
else
return NULL
end if
add back deleted edges

different colors or an extremity colored with a color which cannot be affected to
the second extremity.

The second loop removes every edge such that its weight is not high enough

to be dominant. More precisely, an affinity edge can be deleted if its weight is
not greater than the half of the total weight of its extremity that belongs to
the potential dominated clique. The second part of the algorithm is a search
for a maximum affinity matching included in E. This problem is nothing but
the search of a maximum matching in a bipartite graph, which can be solved in
polynomial time [22]. Finally, there is only to check if each vertex of Cy is an
extremity of an edge of the matching. That can be done by checking the equality
between the cardinal of the matching and the number of vertices of Cs.

Merging parallel cliques The main idea of our first optimization is to re-
duce the size of the split interference graph by removing most of the splitting
points. For that purpose, we define SB-cliques (for split-blocks cliques by anal-
ogy to basic blocks), as cliques of the interference graph. Initially, all SB-cliques
are statement cliques. If two SB-cliques are parallel, then they can be merged
(resulting in a new SB-clique), since each pair of vertices linked by an edge of
the dominant matching can be coalesced. Indeed, there exists an optimal solu-
tion that assigns the same color to both vertices. This merge leads to a graph
where new dominations may appear, as well as vertices with no preference edges.
These vertices can be removed from the graph since the interference degree of
any vertex is lower than k.

Merging two SB-cliques is equivalent to removing the splitting point that
separates the split-blocks they represent and, hence, removing copies that have
been created by the deleted splitting point. In other words, merging two split-
blocks is equivalent to undo a splitting. Moreover, since merging two cliques
yields a new SB-clique, the reduction can be performed until the graph is left
unchanged. In order to speed up the process, for each clique i, we first compute
the set N (i) of SB-cliques j such that there exists an affinity edge having an
extremity in ¢ and the other in j. Then, there is only to find and merge parallel-
cliques, and update the graph. This process is iterated as long as there are
parallel-cliques in the graph.

Algorithm 2 details our reduction. When applied to the graph of figure 2, it
yields an empty graph, meaning that this instance can be optimally solved in
polynomial time. Moreover, the solution requires only 3 colors. Iterated register
coalescing (a state-of-the-art coalescing heuristics) requires 4 colors when applied
to the original interference graph. Actually, if j and b are coalesced then any
coloring of the classical interference graph requires at least four colors. Indeed,
if jb is the vertex obtained by coalescing j and b, then e, f,m and j,b form a
clique of 4 vertices. Thus these 4 vertices must have different colors, and four
colors (at least) are needed. It shows, again, that live-range splitting can provide
better solutions because variables belonging to split live-ranges may be stored
in different registers.

3.2 Decomposition by clique separators

Our second optimization is a decomposition based on clique separators, inspired
from [21, 16]. Its main idea is to use SB-cliques as separation sets. A separation
set is a set of vertices whose removal partitions a connected component into
several ones. Then, the coalescing will not be solved on the whole graph, but on
each component resulting from the decomposition.

In split interference graphs, this decomposition can be done in linear time,
rather than in quadratic time. Indeed, the hardest task is to find interference
clique separators. This can easily been done in split interference graphs since
all interference cliques are disjoint. Hence, to know if a SB-clique is a separator
clique, we create a graph where a vertex represents a SB-clique and two vertices
are adjacent if there exists an edge between the two cliques that these vertices

10

Algorithm 2 graph reduction (G)

Require: A split interference graph G
Ensure: A reduced split interference graph

1: remove vertices that do not belong to any affinity edge
2: compute statement cliques

3: for all SB-clique i do

4: N(i) = {statement cliques linked to ¢ with an affinity edge}
5: end for

6: red =1

7: while red # 0 do

8: red =0

9: for all statement clique ¢ do

10: for all j € N(j) such that |j] > |i| do

11: M = dominated parallel cliques(i, j)
12: if M # NULL then

13: merge each pair of M and compute new weights
14: red = red+1

15: N(ij) := N(i) UN(j)

16: for all kK € N(i) UN(j) do

17: N(k) := N(k)Uij\{i,j}

18: end for

19: end if
20: end for
21: end for

22: end while

represent. Then, we compute separator vertices of this graph. A separator vertex
of this graph corresponds to a separator clique of the split interference graph.

Furthermore, our first optimization based on cliques merging (see algorithm 1)
makes cliques more likely to be separators. Indeed, if a union of two cliques is a
separable set, then the clique obtained by merging these two cliques is a sepa-
ration clique.

Finally, another strength of our decomposition is that it gets rid of solutions
that are permutations of previous solutions. For a coloring problem, the huge
number of such permutations makes this problem hard to deal with. For instance,
if D1 and Dy are two components of the decomposition that intersect, then
coloring D, affects part of Dy. Thus, later, when D must be colored, all solutions
that are not compatible with the coloring for Dy can be removed, including many
permutations. Since ILP solvers are very sensitive to permutations, deleting some
of them may lead to much faster computations.

3.3 Impact on the cutting-plane algorithm for coalescing

Even if any algorithm can be used after our optimizations to solve coalescing,
this section focuses on the most efficient optimal algorithm, the cutting-plane

11

algorithm of Grund and Hack[15]. More precisely, we discusses of the theoritical
impact our approach has on this algorithm.

First, at each iteration where a dominated clique of size s is found, the size
of the graph decreases of s vertices, s? interference edges and at least s affinity
edges. On the ILP formulation of Grund and Hack, it involves a reduction of at
least ks+ s variables (ks for vertices and at least s for affinity edges) and at least
52 4+ k@ + s constraints (s? for interference constraints, k@ for affinity
constraints and s for coloring constraints). Such a reduction is quite significant,
especially when applied many times as the reduction does.

Moreover, the number of cut inequalities generated for the cutting-plane
algorithm and the number of variables involved in them decrease with the size
of the graph. The more cut inequalities are generated, the more the solver takes
time to find efficient ones for each iteration of the simplex algorithm (on which
solvers rely). Following the same idea, the more variables are involved in a cut
inequality, the more it is difficult to find values for these variables. For instance,
a path cut [15] is more efficient if it concerns a path of three affinity edges than
if it concerns a path of ten affinity edges. For these reasons, the computation of
cut inequalities and the solution are speeded up when using our optimizations.

4 Experimental results

As mentioned previously, we use the optimal coalescing challenge (OCC) as
benchmark. OCC is a set of 474 large interference graphs that result from a
spilling phase. Our two optimizations are performed on the OCC graphs and
generate simplified graphs that are given as input to the ILP formulation (and
the associated cutting-plane algorithm) defined by Grund and Hack in [15]. We
use the AMPL/CPLEX 9.0 solver (as in [15]) on a PENTIUM 4 2.26Ghz. The
first part of this section measures the efficiency of our reduction. Then, the
section details respectively optimal and near-optimal solutions.

4.1 Reduction and decomposition

The first measure is the ratio between the sizes of the OCC graph and the
biggest subgraph on which coalescing has to be solved (i.e. resulting from our
decomposition). We focus on this subgraph because its solution requires almost
the whole computation time. These results are detailed in figure 4.

The average reduction is quite significant since the vertex (resp. edge) number
is divided by 6 (resp. 4.5). Let us note that the precolored vertices are always kept
(because they model the calling conventions of the processor), thus involving a
smaller reduction ratio for small graphs. 90% of the reduction arises from the
first optimization, i.e. from the deletion of a set of splitting points. Moreover,
the reduction runs very fast since it only takes 6 seconds when applied to all the
instances of OCC.

12

Initial number{Number of|Vertex number|Edge number
of vertices instances ratio ratio
0-499 292 18,37% 32,59%
500-999 97 13,76% 26,71%
1000-2999 63 12,72% 26,73%
over 3000 22 12,64% 7,64%

Fig. 4. Size reductions for OCC graphs. The vertex (resp. edge) number ratio is the
ratio between the number of vertices (resp. edges) of the graph after reduction and the
one before reduction.

4.2 Optimal solutions

We compute optimal solutions for each component of the decomposition using
the cutting-plane algorithm of Grund and Hack [15]. For each interference edge,
we only compute the path cut corresponding to the shortest path of preference
edges linking its extremities. Figure 5 shows a fall of computation times between
the solution with and without our optimizations. Indeed, the cutting-plane algo-
rithm finds only 430 optimal solutions within 5 minutes when applied to the OCC
graph. When used after our optimization, the cutting-plane algorithm finds 436
instances within one second (including the time spent for our 2 optimizations).
On average, the cutting-plane algorithm runs 300 times faster when combined
with our 2 optimizations. Only 6 instances are solved in more than one minute,
and only 3 of them are solved in more than 150 seconds.

500

450 r/_ﬁ]
400 DR o - |

350 i

300 [t / b
250 fHf |

200 1

Number of instances solved

150 1
100 1

50 |
With unsplitting
Without gnsplitting ,,,,,,,

0 L L L L
0 20 40 60 80 100 120 140

Time (in seconds)

Fig. 5. Number of instances solved within a short time limit : comparison of the cutting-
plane algorithm efficiency when using (or not) our optimizations.

13

Moreover, we are the first to solve the whole OCC instances optimally. Indeed,
in [15] 3 solutions are far too slow and thus their optimality was not certain. We
have found a strictly better solution for one instance and proved that the two
other solutions are optimal.

4.3 Near-optimal solutions

Many problems are solved within a few seconds. We adapt our approach to the
other problems in order to avoid combinatorial explosion. Thus, we tune the
ILP solver for the 6 instances that take more than one minute to be solved.
Numerical results are presented figure 4.3.

A first way of tuning the solver is to give it a time limit. Finding the optimal
solution (or a near optimal one) often takes less than 10% of the computation
time. The ILP formulation can call the solver a lot, even if the solver has a time
limit. Thus, the computation can take more than the time limit. However, it
never exceeds this limit too much since there is empirically only one call to the
solver that reaches the time limit. In addition, this method can fail if no integer
solution is found within the time limit.

A better way to tune the solver is to limit the gap between the expected
solution and the optimum. Indeed, the solver can give at any time the gap
between the current best solution and the best potential one using a bound
of the latter. This method is the opposite of choosing a time limit: it sets the
quality of the expected solution and evaluates the time spent to find it, instead
of setting a time limit and evaluating the quality of the solution.

Instance 144 | 304 | 371 | 387 |390| 400
Optimum value 129332(6109{1087| 3450 |339|1263
Optimistic value [188903[9602|1616| 8788 [677|2936
20s limited value [129333| no | no | no [417|1388
30s limited value |129333| no [1285| no |365(1263

10% gap limited value|132040(6448|1094| 3550 [339/1263
5% gap limited value |129342(6273|1094| 3450 |339|1263
Optimum time 11026 |1058| 132 |29543|102| 75
10% gap limited time| 15 36 | 62 | 115 | 86| 21
5% gap limited time 17 64 | 62 |1187]92| 21

Fig. 6. Comparison between different approaches for solving the hardest instances of
OCC. no means that no solution is computed within the time limit. Times are in
seconds.

Results of figure 4.3 give a flavor of the quality of coalescing on split inter-
ference graphs. First, optimistic coalescing (i.e. the best known heuristics for
coalescing [19]), is clearly overpassed by limited ILP. Indeed, a short time limit
of 20 seconds is already better when it does not fail. Second, a time limit of 30
seconds leads to near-optimal coalescing. The gap between the corresponding

14

solutions and the optimum is never greater than 20%, while the gap for the
optimistic coalescing is often about 50%. The failure that occurs for some in-
stances is quite prohibitive but the time limit gives a good idea of the difficulty
for solving an instance.

Last, using a gap limit seems very powerful, especially when it is large enough
to avoid combinatorial explosion. Here, a limit of 10% leads to solutions of very
good quality (under 5% of gap with the optimum) and within a quite short time
(less than 2 minutes). Giving a too restricted limit (such as 5% or less) leads to
good solutions too but these solutions may be quite slower, as for the instance
387 that goes from 115 to 1187 seconds when the gap goes from 10% to 5%.

5 Related work

Goodwin and Wilken were the first using ILP to solve register allocation [14].
Their model was quite difficult to handle since they tackled the problem with a
hardware point of view. Since then, some improvements were added, in particu-
lar by Fu and Wilken [13], Appel and George [3], or Grund and Hack [15]. Appel
and George optimally solved spilling by ILP and empirically showed that sepa-
rating spilling and coalescing does not significantly worsen the quality of register
allocation. Because of their ILP formulation, they perform extreme live range
splitting. For that reason, they were not able to solve coalescing optimally. More
recently, Grund and Hack proposed a cutting-plane algorithm to solve coalescing
and were the first to solve the optimal coalescing challenge [15]

Our study reuses this previous work and focuses on properties of split inter-
ference graphs. Concerning coalescing, our optimizations divide the size of the
interference graphs (by ten when measured on the OCC graphs), thus enabling
us to find in a faster way more solutions that are optimal and efficient. Moreover,
our reduction can explain why optimistic coalescing is quite efficient for split in-
terference graphs. Indeed, our reduction is close to optimistic coalescing: the
vertices that are coalesced with this heuristics often correspond to the edges of
dominant matchings. Thus, moves corresponding to these edges can be removed
while conserving optimality.

When a program is in SSA form, each variable is defined only once. A program
modified by extreme live-range splitting can be considered as a generalization of
a SSA form. There is a lof of work on register coalescing for programs in SSA
forms. This work relies on the chordality of interference graphs resulting from
SSA forms and is different from our work.

6 Conclusion

Our main motivation was to improve register coalescing using ILP techniques.
Solving an ILP problem is exponential in time and thus reducing the size of
the formulation can drastically speed up the solution. Rather than reasoning on
the ILP model, we have studied the impact of extreme live-range splitting on
register coalescing. We have reused 2 properties of interference graphs resulting

15

from extreme live-range splitting, that are useful for simplifying these graphs.
We have defined 2 optimizations for reducing significantly the size of the ILP
formulations for coalescing. They are general enough and they can be combined
with well-known heuristics for register coalescing.

As said in [15], all the optimizations must go hand in hand to achieve top per-
formance. Whe our optimizations are combined with a cutting-plane algorithm,
we solve the whole optimal coalescing challenge optimally and more efficiently
than previously.

Moreover, this work on extreme live-range splitting raises many questions.
Indeed, it can be interesting to relax some constraints on split-blocks merging
in order to design new heuristics, or to wonder if unsplitting could be done
before spilling. Finally, since finding optimal solutions for spilling and coalescing
separately is not elusive anymore, one could expect to solve both simultaneously
and to evaluate the real gap arising from the separation.

This work is part of an on-going project called CompCert 2, that investigates
the formal verification of a realistic C compiler usable for critical embedded soft-
ware. Future work concern the formal verification of the optimizations described
in this paper.

References

1. A. W. Appel. Modern Compiler Implementation in ML. Cambridge University
Press, 1998.

2. Andrew W. Appel and Lal George. Optimal coalescing challenge, 2000. http:
//www.cs.princeton.edu/~appel/coalesce.

3. Andrew W. Appel and Lal George. Optimal spilling for CISC machines with few
registers. In PLDI’01, pages 243-253, 2001.

4. Peter Bergner, Peter Dahl, David Engebretsen, and Matthew O’Keefe. Spill code
minimization via interference region spilling. In PLDI ’97, pages 287-295, 1997.

5. Sandrine Blazy and Benot Robillard. Live-range unsplitting for faster optimal
coalescing (extended version). Technical report, CEDRIC, oct 2008.

6. Florent Bouchez, Alain Darte, and Fabrice Rastello. On the complexity of register
coalescing. In CGO’07, mar 2007.

7. Florent Bouchez, Alain Darte, and Fabrice Rastello. Advanced conservative and
optimistic coalescing. In CASES’08, Atlanta, USA, oct 2008.

8. Preston Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice Univer-
sity, april 1992.

9. Philip Brisk, F.Dabiri, J.Macbeth, and M.Sarrafzadeh. Polynomial time graph
coloring register allocation. In 14th Int. Workshop on Logic and Synthesis, 2005.

10. G J Chaitin. Register allocation and spilling via graph coloring. Symposium on
Compiler Construction, 17(6):98 — 105, 1982.

11. Fred C. Chow and John L. Hennessy. The priority-based coloring approach to
register allocation. ACM Trans. Program. Lang. Syst., 12(4):501-536, 1990.

12. Keith D. Cooper and L. Taylor Simpson. Live range splitting in a graph coloring
register allocator. In CC 98, pages 174-187, 1998.

2 http://compcert.inria.fr

16

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Changqing Fu and Kent Wilken. A faster optimal register allocator. In MICRO
35, pages 245-256, 2002.

David Goodwin and Kent Wilken. Optimal and near-optimal global register allo-
cations using 0-1 integer programming. Softw. Pract. Ezxper., 26(8):929-965, 1996.
Daniel Grund and Sebastian Hack. A fast cutting-plane algorithm for optimal
coalescing. In CC’07, volume 4420 of LNCS, pages 111-125, 2007.

Rajiv Gupta, Mary Lou Soffa, and Denise Ombres. Efficient register allocation via
coloring using clique separators. ACM TOPLAS., 16(3):370-386, 1994.
Priyadarshan Kolte and Mary Jean Harrold. Load/store range analysis for global
register allocation. In PLDI’93, pages 268-277, 1993.

Guei-Yuan Lueh and Thomas Gross. Fusion-based register allocation. ACM Trans-
actions on Programming Languages and Systems, 22:2000, 1997.

Jinpyo Park and Soo-Mook Moon. Optimistic register coalescing. In PACT 98,
page 196, 1998.

Vivek Sarkar and Rajkishore Barik. Extended linear scan: An alternate foundation
for global register allocation. In CC’07, volume 4420 of LNCS, pages 141-155, 2007.
Robert Endre Tarjan. Decomposition by clique separators. Discrete Mathematics,
55(2):221-232, 1985.

Douglas B. West. Introduction to Graph Theory (2nd Edition). Prentice Hall,
August 2000.

Mihalis Yannakakis and Fanica Gavril. The maximum k-colorable subgraph prob-
lem for chordal graphs. Inf. Process. Lett., 24(2):133-137, 1987.

