Exercise - answer

$$
\begin{align*}
\operatorname{maximize} & 2 x_{1}+4 x_{2}+x_{3} \\
\text { subject to: } & 2 x_{1}+x_{2}+x_{3} \leq 10 \tag{1}\\
& x_{1}+x_{2}-x_{3} \leq 4 \tag{2}\\
& 0 \leq x_{1} \leq 4,0 \leq x_{2} \leq 6,1 \leq x_{3} \leq 6 \tag{3}
\end{align*}
$$

The restricted master problem is given by the constraints (1) and (2) and the constraints at (3) will be at the Auxiliary Problem. Use $x_{1}=x_{2}=0, x_{3}=1$, which means the column $(0,0,1)$ to start the solution of this exercise.

Restricted Master Problem

$$
\begin{align*}
\text { maximize } & z=\sum_{j=1}^{p_{R}}\left(c^{\top} v_{j}\right) \lambda_{j} \tag{4}\\
\text { subject to: } & \sum_{j=1}^{p_{R}}\left(A_{1} v_{j}\right) \lambda_{j} \leq 10 \tag{5}\\
& \sum_{j=1}^{p_{R}}\left(A_{2} v_{j}\right) \lambda_{j} \leq 4 \tag{6}\\
& \sum_{j=1}^{p_{R}} \lambda_{j}=1 \tag{7}
\end{align*}
$$

Consider π_{1}, π_{2} e π the dual variables related to the constraints (5), (6) and (7) of the Restricted Master Problem respectively. p_{R} are the columns of the restricted master problem.

Auxiliary Problem

maximize $\quad\left(2-2 \pi_{1}-\pi_{2}\right) x_{1}+\left(4-\pi_{1}-\pi_{2}\right) x_{2}+\left(1-\pi_{1}+\pi_{2}\right) x_{3}-\nu$
subject to: $0 \leq x_{1} \leq 4,0 \leq x_{2} \leq 6,1 \leq x_{3} \leq 6$

First iteration

Let $x_{1}=x_{2}=0, x_{3}=1$, which means the column $(0,0,1)$, as an initial feasible column. We are going to find the coefficients of the objective function and the constraints of RMP of the first iteration.

$$
c^{\top} v_{1}=(2,4,1)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=1, A_{1}^{\top} v_{2}=(2,1,1)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=1, A_{2}^{\top} v_{2}=(1,1,-1)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=-1
$$

Thus, the the first Restricted Master Problem (RMP1) is:

$$
\left.\begin{array}{c}
(R M P 1) \text { maximize } z=1 \lambda_{1} \\
\text { subject to: } 1 \lambda_{1} \leq 10 \\
-1 \lambda_{1} \leq 4 \\
\lambda_{1}=1
\end{array}\right\}
$$

Auxiliary problem 1 (AP1)
(AP1) maximize $2 x_{1}+4 x_{2}+1 x_{3}-1$
subject to: $0 \leq x_{1} \leq 4,0 \leq x_{2} \leq 6,1 \leq x_{3} \leq 6$
$\mathrm{OF}=38, x_{1}=4, x_{2}=x_{3}=6 . \mathrm{UB}=1+38=39$.
Solving auxiliary problem for column 1, we have column 2,

$$
v_{2}^{\top}=(4,6,6)
$$

and the coefficients for λ_{2} at the objective function of the master problem of the second iteration are:

$$
c^{\top} v_{2}=(2,4,1)\left(\begin{array}{l}
4 \\
6 \\
6
\end{array}\right)=38, a_{1}^{\top} v_{2}=(2,1,1)\left(\begin{array}{l}
4 \\
6 \\
6
\end{array}\right)=20, a_{2}^{\top} v_{2}=(1,1,-1)\left(\begin{array}{l}
4 \\
6 \\
6
\end{array}\right)=4
$$

Second iteration

$$
\begin{gathered}
(R M P 2) \text { maximize } z=1 \lambda_{1}+38 \lambda_{2} \\
\text { subject to }: 1 \lambda_{1}+20 \lambda_{2} \leq 10 \\
-1 \lambda_{1}+4 \lambda_{2} \leq 4 \\
\lambda_{1}+\lambda_{2}=1 \\
\bar{z}=18.526316, \lambda_{1}=0.526316, \lambda_{2}=0.473684, \pi_{1}=1.947368, \pi_{2}=0, \nu=-0.947368
\end{gathered}
$$

Auxiliary problem

$$
\begin{aligned}
\operatorname{maximize} & \left(2-2 \pi_{1}-\pi_{2}\right) x_{1}+\left(4-\pi_{1}-\pi_{2}\right) x_{2}+\left(1-\pi_{1}+\pi_{2}\right) x_{3}-\nu \\
\text { subject to: } & 0 \leq x_{1} \leq 4,0 \leq x_{2} \leq 6,1 \leq x_{3} \leq 6
\end{aligned}
$$

Replacing the values of $\pi_{1}=1.947368, \pi_{2}=0, \nu=-0.947368$ we have:

Auxiliary problem 2

$$
(A P 2) \text { maximize }-1.894736 x_{1}+2.052632 x_{2}-0.947368 x_{3}+0.947368
$$

$$
\text { subject to: } 0 \leq x_{1} \leq 4,0 \leq x_{2} \leq 6,1 \leq x_{3} \leq 6
$$

$$
\begin{gathered}
\mathrm{OF}=12.315791999999998, x_{1}=0, x_{2}=6, x_{3}=1 \\
\mathrm{UB}=18.526316+12.315791999999998=30.842108
\end{gathered}
$$

Column 3 is: $v_{3}^{\top}=(0,6,1)$ and the coefficients of λ_{3} at the objective function and at the constraints are, respectively:

$$
c^{\top} v_{3}=(2,4,1)\left(\begin{array}{l}
0 \\
6 \\
1
\end{array}\right)=25, a_{1}^{\top} v_{3}=(2,1,1)\left(\begin{array}{l}
0 \\
6 \\
1
\end{array}\right)=7, a_{2}^{\top} v_{3}=(1,1,-1)\left(\begin{array}{l}
0 \\
6 \\
1
\end{array}\right)=5 .
$$

Third iteration

$$
\left.\begin{array}{c}
(R M P 3) \text { maximize } z=1 \lambda_{1}+38 \lambda_{2}+25 \lambda_{3} \\
\text { subject to: } 1 \lambda_{1}+20 \lambda_{2}+7 \lambda_{3} \leq 10 \\
-1 \lambda_{1}+4 \lambda_{2}+5 \lambda_{3} \leq 4 \\
\lambda_{1}+\lambda_{2}+\lambda_{3}=1
\end{array}\right\} \begin{gathered}
\bar{z}=25.857143, \lambda_{1}=0.119048, \lambda_{2}=0.285714, \lambda_{3}=0.595238 \\
\pi_{1}=1.214286, \pi_{2}=2.785714 \text { and } \nu=2.571429
\end{gathered}
$$

Auxiliary problem

$$
\begin{aligned}
\operatorname{maximize} & \left(2-2 \pi_{1}-\pi_{2}\right) x_{1}+\left(4-\pi_{1}-\pi_{2}\right) x_{2}+\left(1-\pi_{1}+\pi_{2}\right) x_{3}-\nu \\
\text { subject to: } & 0 \leq x_{1} \leq 4,0 \leq x_{2} \leq 6,1 \leq x_{3} \leq 6
\end{aligned}
$$

Replacing the values of $\pi_{1}=1.214286, \pi_{2}=2.785714$ and $\nu=2.571429$ we have:

Auxiliary problem 3

$$
\begin{gathered}
(A P 3) \text { maximize }-3.214286 x_{1}+0.571428 x_{3}-2.571429 \\
\text { subject to: } 0 \leq x_{1} \leq 4,0 \leq x_{2} \leq 6,1 \leq x_{3} \leq 6
\end{gathered}
$$

$$
\mathrm{OF}=0.857139, x_{1}=x_{2}=0, x_{3}=6 .
$$

UB: $25.857143+0.857139=26.714282$.
Column 4 is $v_{4}^{\top}=(0,0,6)$ and the coefficients for λ_{4} at the objective function and at the constraints of the master problem are respectively:

$$
c^{\top} v_{4}=(2,4,1)\left(\begin{array}{l}
0 \\
0 \\
6
\end{array}\right)=6, a_{1}^{\top} v_{4}=(2,1,1)\left(\begin{array}{l}
0 \\
0 \\
6
\end{array}\right)=6, a_{2}^{\top} v_{4}=(1,1,-1)\left(\begin{array}{l}
0 \\
0 \\
6
\end{array}\right)=-6 .
$$

Fourth iteration

$$
\bar{z}=26.75, \lambda_{1}=0.0, \lambda_{2}=0.236111, \lambda_{3}=0.694444, \lambda_{4}=0.069444
$$

$$
\pi_{1}=1.125, \pi_{2}=1.625 \text { and } \nu=9.0
$$

Auxiliary problem
maximize $\quad\left(2-2 \pi_{1}-\pi_{2}\right) x_{1}+\left(4-\pi_{1}-\pi_{2}\right) x_{2}+\left(1-\pi_{1}+\pi_{2}\right) x_{3}-\nu$
subject to: $0 \leq x_{1} \leq 4,0 \leq x_{2} \leq 6,1 \leq x_{3} \leq 6$

$$
\begin{aligned}
& \text { (RMP4) maximize } \quad z=1 \lambda_{1}+38 \lambda_{2}+25 \lambda_{3}+6 \lambda_{4} \\
& \text { subject to: } 1 \lambda_{1}+20 \lambda_{2}+7 \lambda_{3}+6 \lambda_{4} \leq 10 \\
& -1 \lambda_{1}+4 \lambda_{2}+5 \lambda_{3}-6 \lambda_{4} \leq 4 \\
& \lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}=1
\end{aligned}
$$

Replacing the values of $\pi_{1}=1.125, \pi_{2}=1.625$ and $\nu=9.0$ we have:

Auxiliary problem 4

$(A P 4)$ maximize $-1.875 x_{1}+1.25 x_{2}+1.5 x_{3}-9$
\quad subject to: $0 \leq x_{1} \leq 4,0 \leq x_{2} \leq 6,1 \leq x_{3} \leq 6$

$$
\mathrm{OF}=7.5, x_{1}=0, x_{2}=6, x_{3}=6
$$

UB: 34.25.
Column 5 is $v_{5}^{\top}=(0,6,6)$ and the coefficients for λ_{5} at the objective function and at the constraints of the master problem are respectively:

$$
c v_{5}=(2,4,1)^{\top}\left(\begin{array}{l}
0 \\
6 \\
6
\end{array}\right)=30, A_{1} v_{5}=(2,1,1)^{\top}\left(\begin{array}{l}
0 \\
6 \\
6
\end{array}\right)=12, A_{2} v_{5}=(1,1,-1)^{\top}\left(\begin{array}{l}
0 \\
6 \\
6
\end{array}\right)=0 .
$$

Fifth iteration

$$
(R M P 5) \text { maximize } z=1 \lambda_{1}+38 \lambda_{2}+25 \lambda_{3}+6 \lambda_{4}+30 \lambda_{5}
$$

$$
\text { subject to: } 1 \lambda_{1}+20 \lambda_{2}+7 \lambda_{3}+6 \lambda_{4}+12 \lambda_{5} \leq 10
$$

$$
-1 \lambda_{1}+4 \lambda_{2}+5 \lambda_{3}-6 \lambda_{4}+0 \lambda_{5} \leq 4
$$

$$
\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5}=1
$$

$$
\begin{gathered}
\bar{z}=28.0, \lambda_{1}=0.0, \lambda_{2}=0.16666, \lambda_{3}=0.66666, \lambda_{4}=0.0, \lambda_{5}=0.16666 \\
\pi_{1}=1.0, \pi_{2}=0.0 \text { and } \nu=18.0
\end{gathered}
$$

Auxiliary problem
maximize $\left(2-2 \pi_{1}-\pi_{2}\right) x_{1}+\left(4-\pi_{1}-\pi_{2}\right) x_{2}+\left(1-\pi_{1}+\pi_{2}\right) x_{3}-\nu$
subject to: $0 \leq x_{1} \leq 4,0 \leq x_{2} \leq 6,1 \leq x_{3} \leq 6$
Replacing the values of $\pi_{1}=1.0, \pi_{2}=0.0$ and $\nu=18.0$ we have:

Auxiliary problem 5

(AP5) maximize $3 x_{2}-18$
subject to: $0 \leq x_{1} \leq 4,0 \leq x_{2} \leq 6,1 \leq x_{3} \leq 6$

$$
\mathrm{OF}=0, x_{1}=0, x_{2}=6, x_{3}=1
$$

UB: 28.0 .
As $\mathrm{UB}=\bar{z}=28.0$ we are at the optimal solution, that is, $\lambda_{1}=0.0, \lambda_{2}=0.166666666, \lambda_{3}=0.66666666$, $\lambda_{4}=0.0, \lambda_{5}=0.166666666$. The solution of the problem is:

$$
\begin{gathered}
\lambda_{2} v_{2}+\lambda_{3} v_{3}+\lambda_{5} v_{5}=0.16666666\left(\begin{array}{l}
4 \\
6 \\
6
\end{array}\right)+0.66666666\left(\begin{array}{l}
0 \\
6 \\
1
\end{array}\right)+0.166666666\left(\begin{array}{l}
0 \\
6 \\
6
\end{array}\right)= \\
\left(\begin{array}{c}
0.66666666 \\
0,999999996 \\
0,999999996
\end{array}\right)+\left(\begin{array}{c}
0 \\
3,99999996 \\
0.66666666
\end{array}\right)+\left(\begin{array}{c}
0 \\
0,999999996 \\
0,999999996
\end{array}\right)=\left(\begin{array}{c}
0.66666666 \\
6 \\
2,66666666
\end{array}\right)=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
\end{gathered}
$$

with objective function value of 28 .

