
Short Course on Column Generation - Part I

Ana Flávia U. S. Macambira
ana.macambira@academico.ufpb.br

Alain Faye
alain.faye@ensiie.fr

Departamento de Estatística
Universidade Federal da Paraíba

École nationale supérieure d’informatique pour l’industrie et l’entreprise

Ana Flávia U. S. Macambira Column Generation - Part I 1 / 118

ana.macambira@academico.ufpb.br
alain.faye@ensiie.fr 


Overview
1 Linear Programming - revision

Feasible Region

Simplex Method

Two Phase Simplex Method

Dual Problem

Complementary Slackness Theorem

Minkowski’s Representation Theorem

2 Dantzig-Wolfe Decomposition

Dantzig-Wolfe Decomposition - Example

3 Column Generation in Linear Programming

Column Generation - Example

4 Integer Programming - revision

Ana Flávia U. S. Macambira Column Generation - Part I 2 / 118



Linear Programming - Revision - Feasible region

Given a linear programming problem (LP),

(LP) : maximize z = c⊤x

subject to: Ax ≤ b

x ≥ 0

(1)
(2)
(3)

the feasible region defined by constraints (2), (3) is a convex set. This convex set
can be limited or not.
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Linear Programming - Revision - Feasible region

Examples
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(a) Bounded feasible region
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(b) Unbounded feasible region
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Linear Programming - Revision - Simplex Method

Again, consider a linear programming problem (LP),

maximize z = c⊤x

subject to: Ax = b

x ≥ 0

A ∈ Rm×n, b ∈ Rm×1, c ∈ Rn×1, x ∈ Rn×1.
Suppose that rank(A) = m, thus, A has at least one square non singular
submatrix of order m. We can split matrix A as A = (B N), where B ∈ Rm×m,
N ∈ Rm×n−m and we can suppose that B is non singular. The columns in B we
call them basic columns and the columns in N, non basic columns.

We also can split vectors x =

(
xB
xN

)
and c =

(
cB
cN

)
.
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Linear Programming - Revision - Simplex Method

maximize z = c⊤x

subject to: Ax = b

x ≥ 0

A = [B N], x =

(
xB
xN

)
and c =

(
cB
cN

)
.

maximize z = cBxB + cNxN

subject to: BxB + NxN = b

xB ≥ 0, xN ≥ 0
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Linear Programming - Revision - Simplex Method

BxB + NxN = b

BxB = b − NxN

xB = B−1b − B−1NxN

xB = B−1b − B−1NxN

In order to start Simplex Algorithm, we need to
have an initial solution, given by an initial basis,
which is B. So, as the non basic variables are not
participating of this solution, they assume zero
value, and we get:

x̄B = B−1b.

Remember that B−1 ∈ Rm×m, b ∈ Rm×1. So,
we find the value x̄B of each variable currently at
the basis by multiplying B−1b.
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Linear Programming - Revision - Simplex Method

maximize z = cBxB + cNxN

subject to: BxB + NxN = b

xB ≥ 0, xN ≥ 0

The current solution is:

x̄B = B−1b, x̄N = 0

So, the current objective value is:

z̄ = cB x̄B = cBB
−1b

Question: is this the current solution the optimal one? In order to answer that, we
have to see if there is at least one variable which can improve the value of the
objective function.
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Linear Programming - Revision - Simplex Method

BxB + NxN = b

BxB = b − NxN

xB = B−1b − B−1NxN

z = cBxB + cNxN

z = cB(B
−1b − B−1NxN) + cNxN

z = cBB
−1b − cBB

−1NxN + cNxN

z = cBB
−1b︸ ︷︷ ︸
z̄

+(cN − cBB
−1N)︸ ︷︷ ︸

gain

xN

where z̄ is the value of the current
solution.
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Linear Programming - Revision - Simplex Method

Taking a look at the expression of the value of gain, we have that

(cN − cBB
−1︸ ︷︷ ︸

dual variable

N)xN

Suppose we call π the dual variable and suppose that j are the indexes in the set
N of non basic variables. So we have

(cj − πaj)xj .

Returning to the previous equation, we have:

z = cBB
−1b︸ ︷︷ ︸
z̄

+(cN − πN)︸ ︷︷ ︸
gain

xN

So, as we have a maximization problem, we try to find a variable xj ∈ N that gives a
positive gain, which increases the current value of the objective function.
On the other hand, to a minimization problem we look for a variable xj , j ∈ N that
provides a negative reduced cost, which decreases the current value of the objective
function.
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Linear Programming - Revision - Simplex Method

So, once we have a basic feasible solution for the problem which we want to
solve, the intuitive question appears: is this the optimal solution?

In order to answer this question, we have to look, among all non-basic
variables and if there is one that improves the value of the objective function,
given a criteria, which can be the variable that gives the most negative
reduced cost (for minimizing problems) or the most positive gain (for
maximizing problems);

If there is no variable to enter the basis, then the current solution is optimal
and the problem is solved.

If we have found a variable to enter the basis, we look for one variable to
leave the basis and the new variable will enter the basis in the same position
of the one that left it, and we start another iteration of the method.
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Linear Programming - Revision - Two Phase Simplex
Method

If we don’t have an initial solution to start Simplex Method, we can use two
phase method in order to find a basic feasible solution to the problem;

the first phase of the method consists in inserting artificial variables to the
problem and solve one problem derived from the original one but with an
objective function minimizing the sum of all artificial variables we inserted at
the problem. So, at the end of the first phase we find all artificial variables
with value zero and as a result we have a basic feasible solution for the
original problem;

if we cannot find all artificial variables with value zero at the end of the first
phase, it means that the original problem is not feasible;

if the first phase was successful, the second phase is to solve the original
problem we had.
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Linear Programming - Revision - Two Phase Simplex
Method

maximize 6x1 − x2

subject to: 4x1 + x2 ≤ 21
2x1 + 3x2 ≥ 13
x1 − x2 = −1
x1, x2 ≥ 0

Inserting the slack variables and artificial variables, we get:

maximize 6x1 − x2

subject to: 4x1 + x2 + x3 = 21
2x1 + 3x2 − x4 + xa1 = 13
− x1 + x2 + xa2 = 1
x1, x2, x3, x4, x

a
1 , x

a
2 ≥ 0
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Linear Programming - Revision - Two Phase Simplex
Method

Variables x3, x
a
1 e xa2 will form the initial basis and will give the first feasible

solution. So, the problem that we have to solve at the first phase is:

minimize xa1 + xa2
subject to: 4x1 + x2 + x3 = 21

2x1 + 3x2 − x4 + xa1 = 13
− x1 + x2 + xa2 = 1
x1, x2, x3, x4, x

a
1 , x

a
2 ≥ 0

Solving this problem we find x3 = 10, x1 = 2, x2 = 3, xa1 = x4 = xa2 = 0. We
reached the end of the first phase, once the artificial variables have left the basis
and we have a basis composed only by the variables of the original problem which
gives us a feasible solution. From this point on we only have to apply Simplex
Method to the original problem starting with this base and we will find the
optimal solution x∗1 = 4, x∗2 = 5, x∗3 = 0, x∗4 = 10 e z∗ = 19.
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Linear Programming - Revision - Dual Problem

Given a linear programming problem, we can always find its dual problem.
Suppose you have a maximization problem,

maximize z = c⊤x

subject to: Ax ≤ b

x ≥ 0.

We call the problem above a primal problem and its dual problem is given
by

minimize d = b⊤π

subject to: A⊤π ≥ c

π ≥ 0.

So, for each primal problem, there is always a dual problem related to it, so we say
that there is a pair of Primal-Dual problems.
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Linear Programming - Revision - Dual Problem

Given the primal problem below, we are going to find its dual problem.

maximize 3x1 + 4x2

subject to: x1 + 2x2 ≤ 6
4x1 + 3x2 ≤ 12
x1, x2 ≥ 0.

First we assign dual variables to each constraint. Here we are going to use πi to
denote the dual variables.

maximize 3x1 + 4x2

subject to: x1 + 2x2 ≤ 6 (π1)

4x1 + 3x2 ≤ 12 (π2)

x1, x2 ≥ 0.

The objective function of the dual problem is: minimize 6π1 + 12π2.
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Linear Programming - Revision - Dual Problem

Then we transpose matrix A,

A =

(
1 2
4 3

)
, A⊤ =

(
1 4
2 3

)
So, A⊤πi (

1 4
2 3

)(
π1
π2

)
=

{
π1 + 4π2
2π1 + 3π2
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Linear Programming - Revision - Dual Problem

Primal

maximize 3x1 + 4x2

subject to: x1 + 2x2 ≤ 6
4x1 + 3x2 ≤ 12
x1, x2 ≥ 0.

Dual
minimize 6π1 + 12π2

subject to: π1 + 4π2 ≥ 3
2π1 + 3π2 ≥ 4
π1, π2 ≥ 0.

We can observe that all coefficients of the first constraint of the dual problem are
related to primal variable x1 and the same thing happens to the second constraint
of the dual problem related to x2.
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Linear Programming - Revision - Dual Problem

Consider the pair of primal-dual problems:

Primal
maximize z = c⊤x

subject to: Ax ≤ b

x ≥ 0.

Dual
minimize d = b⊤π

subject to: A⊤π ≥ c

π ≥ 0.

Weak duality property
If x̄k , k = 1, ..., n is a feasible solution to the primal problem and π̄i , i = 1, ...,m
is a feasible solution to the dual problem, then

n∑
k=1

c⊤k x̄k ≤
m∑
i=1

b⊤k π̄i .
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Linear Programming - Revision - Dual Problem

Strong duality property.
If the primal problem has a finite optimal solution z∗, then the dual also has a
finite optimal solution d∗ and the values of the respective solutions are equal,
z∗ = d∗.

Primal
maximize z = c⊤x

subject to: Ax ≤ b

x ≥ 0.

Dual
minimize d = b⊤π

subject to: A⊤π ≥ c

π ≥ 0.

Ana Flávia U. S. Macambira Column Generation - Part I 20 / 118



Complementary Slackness Theorem

Theorem
Let x∗ and π∗ be any feasible solutions to the primal and dual problems in the
canonical form. Then they are respectively optimal if and only if

(π∗A− c)x∗ = 0

and

π∗(Ax∗ − b) = 0, i = 1, ...,m.

This theorem is very important in linear programming. We can see that at least
one of the two terms of the multiplication must be zero in each expression, since
the theorem states that the product is equal to zero.
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Complementary Slackness Theorem - Example

Primal

max 2x1 + 3x2 + 5x3 + 2x4 + 3x5

s. to: x1 + x2 + 2x3 + x4 + 3x5 ≥ 4

2x1 − 2x2 + 3x3 + x4 + x5 ≥ 3

x1, x2, x3, x4, x5 ≥ 0.

(4)

(5)

(6)

Dual

max 4π1 + 3π2

s. to: π1 + 2π2 ≤ 2

π1 − 2π2 ≤ 3

2π1 + 3π2 ≤ 5

π1 + π2 ≤ 2

3π1 + π2 ≤ 3

π1, π2 ≥ 0.

(7)

(8)

(9)

(10)

(11)

(12)

The solution to the primal problem is x∗1 = x∗5 = 1, x∗2 = x∗3 = x∗4 = 0. and we are
going to use the complementary slackness theorem to find the optimal value of
the dual problem.
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Complementary Slackness Theorem - Example

Using equation (π∗aj − cj)x
∗
j = 0 of the theorem and considering that we

have x∗1 ̸= 0, then we must have π1 + 2π2 − 2 = 0 which means that
π1 + 2π2 = 2;

Using the same equation and as x∗5 ̸= 0, we have that the fifth constraint in
the dual problem, constraint (12), 3π1 + π2 = 3.

Solving the system {
π1 + 2π2 = 2
3π1 + π2 = 3

we have π∗
1 = 4

5 and π∗
2 = 3

5 .
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Linear Programming - Revision

Consider X = {x ∈ Rn|Ax ≤ b, x ≥ 0},A ∈ Rm×n, rank(A) = m. Let
v1, v2, ..., vp be the vertices of X and r1, r2, ..., rq be the extreme radii of X .

Theorem
(Minkowski’s Representation Theorem)
A point x belongs to X if and only if there exists λj ≥ 0, j = 1, 2, ..., p with∑p

j=1 λj = 1 and µi ≥ 0, i = 1, 2, ..., q such that

x =

p∑
j=1

λjvj +

q∑
i=1

µi ri .

The demonstration can be seen at [1].
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Dantzig-Wolfe decomposition

Consider (LP) again.
(LP) : maximize z = c⊤x

subject to: Ax ≤ b

x ≥ 0

c ∈ Rn×1, x ∈ Rn×1, A ∈ Rm×n, b ∈ Rm×1.
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Dantzig-Wolfe Decomposition

We can split A and b as

A =

(
A1
A2

)
, b =

(
b1
b2

)
.

A1 ∈ Rm1×n, A2 ∈ Rm2×n, b1 ∈ Rm1×1, b2 ∈ Rm2×1

(LP) : maximize z = c⊤x

subject to: A1x ≤ b1

A2x ≤ b2

x ≥ 0

(13)
(14)
(15)
(16)
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Dantzig-Wolfe Decomposition

Suppose X = {x ∈ Rn|A2x ≤ b2, x ≥ 0}.
Accordingly to Theorem 2 we can rewrite x as:

x =

p∑
j=1

λjvj +

q∑
i=1

µi ri ,

with
∑p

j=1 λj = 1, λj ≥ 0, j = 1, 2, ..., p and µi ≥ 0, i = 1, 2, ..., q. and we can
rewrite problem (LP) presented in (13)-(16) as follows.
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Dantzig-Wolfe Decomposition

(LP1) : maximize z = c⊤(

p∑
j=1

λjvj +

q∑
i=1

µi ri )

subject to: A1(

p∑
j=1

λjvj +

q∑
i=1

µi ri ) ≤ b1

p∑
j=1

λj = 1

λj ≥ 0, j = 1, 2, ..., p, µi ≥ 0, i = 1, 2, ..., q

(17)

(18)

(19)

(20)

which can also be rewritten as follows.
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Dantzig-Wolfe Decomposition

(LP1) : maximize z =

p∑
j=1

(c⊤vj)λj +

q∑
i=1

(c⊤ri )µi

subject to:
p∑

j=1

(A1vj)λj +

q∑
i=1

(A1ri )µi ≤ b1

p∑
j=1

λj = 1

λj ≥ 0, j = 1, 2, ..., p, µi ≥ 0, i = 1, 2, ..., q

(21)

(22)

(23)

(24)

This is the Dantzig-Wolfe reformulation for problem (LP) (13)-(16).
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Column Generation in Linear Programming

Problem (LP) (13)-(16) is solved using Simplex method. It means that, at
each iteration you look for the variable which will improve the value of your
objective function until there is no variable to improve it;

The problem (LP1), (21)-(24) is solved also by using Simplex method but
now you are aiming at finding the best vertex. To look for the best vertex
means you are now trying to find a new column, that is, a new combination
of variables’ values which will improve your solution at each Simplex iteration.

Since you moved from analysing n variables at each iteration to analysing
combinations of a subset of the n variables (which form the columns),
Column Generation works for Integer Programming problems. We are going
to see an example of Column Generation for linear programming only to
understand how it works.
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Dantzig-Wolfe Decomposition

There is a complete example with vertices and radii in reference [1]. The
constraints of the example that we are going to see form a limited region,
therefore this example only has vertices and can be found at reference [2].
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Example

maximize x1 + x2

subject to: x1 − x2 ≤ 2
4x1 + 9x2 ≤ 18
−2x1 + 4x2 ≤ 4
x1, x2 ≥ 0.

(25)
(26)
(27)

A1x ≤ b1 is represented by constraint (25) and A2x ≤ b2 is represented by
constraints (26) and (27).
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Example

The extreme points of the polytope {x ∈ R2
+ | A2x ≤ b2, x ≥ 0} are:

v1 = (0, 0)⊤, v2 = (
9
2
, 0)⊤, v3 = (

18
17

,
26
17

)⊤ and v4 = (0, 1)⊤.

So, every point of the polytope given by A2x ≤ b2, x ≥ 0 can be written as a
function of its vertices as:

(x1, x2) = (0, 0)⊤λ1 + (
9
2
, 0)⊤λ2 + (

18
17

,
26
17

)⊤λ3 + (0, 1)⊤λ4

λi ≥ 0 for all i ∈ {1, 2, 3, 4} and also λ1 + λ2 + λ3 + λ4 = 1
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Example

the black points indicate the vertices v1, v2, v3, v4 of the polytope given by
A2x ≤ b2, x ≥ 0;

the black line is associated to A1x = b1, x ≥ 0;

the black arrow indicates the optimal point with coordinates ( 36
13 ,

10
13 );

the optimal point is at the intersection of x1 − x2 = 2 and the polytope given
by A2x ≤ b2, x ≥ 0.
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Example

Remembering that A1x ≤ b1 is represented by constraint x1 − x2 ≤ 2, so
A1 = (1 − 1). Thus,

A1v1 = (1 − 1)
(

0
0

)
= 0;

A1v2 = (1 − 1)
( 9

2
0

)
= 9

2 ;

A1v3 = (1 − 1)
( 18

17
26
17

)
= −8

17 ;

A1v4 = (1 − 1)
(

0
1

)
= −1.
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Example

Rewriting the objective function, we have:

cv1 = (1 1)⊤
(

0
0

)
= 0;

cv2 = (1 1)⊤
( 9

2
0

)
= 9

2 ;

cv3 = (1 1)⊤
( 18

17
26
17

)
= 44

17 ;

cv4 = (1 1)⊤
(

0
1

)
= 1.
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Example

As a result, we have the following master problem:

maximize 0λ1 +
9
2
λ2 +

44
17

λ3 + λ4

subject to: 0λ1 +
9
2
λ2 −

8
17

λ3 − λ4 ≤ 2

λ1 + λ2 + λ3 + λ4 = 1
λ1, λ2, λ3, λ4 ≥ 0

This master problem can be solved directly using Simplex method, and we
obtain λ1 = λ4 = 0, λ2 = 0.497 and λ3 = 0.503;

Remember that (x1, x2) = (0, 0)λ1 + ( 9
2 , 0)λ2 + ( 18

17 ,
26
17 )λ3 + (0, 1)λ4;

(x1, x2) = (0, 0)× 0 + ( 9
2 , 0)× 0.497 + ( 18

17 ,
26
17 )× 0.503 + (0, 1)× 0;

(x1, x2) = (2.2365, 0) + (0.5326, 0.769) = (2.7691, 0.769) = ( 36
13 ,

10
13 ).
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Example

You can see that the optimal solution (x1, x2) = ( 36
13 ,

10
13 ), indicated by the

black arrow, is not a vertex of the polytope A2x ≤ b2, x ≥ 0 but it still can
be written as a convex combination of its vertices v2 = ( 9

2 , 0) and
v3 = ( 18

17 ,
26
17 ).

This observation tells us that we don’t need to know all vertices of the
problem to solve when we use Dantzig-Wolfe decomposition.
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Dantzig-Wolfe Decomposition

It is a method for solving linear problems that have a block structure;

We split the original problem in one pricing problem for each block structure
and a restricted master problem.
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Column Generation

Now, imagine you have a problem with a huge number of variables and we
had rewritten this problem in function of vertices or vertices and rays;

If we use Simplex method to solve this, the step related to the computation
of the reduced cost/gain would take much effort, once the number of
variables at the reformulated problem is much larger than at the original
problem (because it is equal to the number of vertices of the polytope);

Therefore, the best way to solve this kind of problem is to use the automatic
column generation;

Automatic column generation in linear programming were first presented at
[3], [4] and [5].

Ana Flávia U. S. Macambira Column Generation - Part I 40 / 118



Column Generation

For the automatic column generation, instead looking among all variables of
the problem in order to find the ones which will enter the basis, we do an
implicit search for a new column to be added to the master problem;

the implicit search for a new column is the role of the Auxiliary problem, also
called pricing problem;

If there isn’t any column to improve the current solution, it means that we
reached the optimal solution of the original problem.
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Column Generation

Suppose a problem with a
limited feasible region

(PL) : maximize z = c⊤x

subject to: A1x ≤ b1

A2x ≤ b2

x ≥ 0

A

B

C

DE

1 2 3 4 5 6
0

1

2

3

4

5

A Dantzig-Wolfe decomposition
of (PL)

(PLDW ) : maximize z =
∑
vj∈V

(c⊤vj )λj

subject to:
∑
vj∈V

(A1vj )λj ≤ b1

p∑
j=1

λj = 1

λj ≥ 0, j = 1, 2, ..., p

where V is the set of vertices of the polytope
given by constraints A2x ≤ b2.
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Column Generation

Consider V ′ ⊂ V a subset of columns (vertices) of the original problem, which
includes at least a set of basic variables related to one basic feasible solution of
the original problem. According to that we have the Restricted Master Problem
(RMP)

(RMP) : maximize z =
∑
vj∈V′

(c⊤vj)λj

subject to:
∑
vj∈V′

(A1vj)λj ≤ b1

∑
j :vj∈V′

λj = 1

λj ≥ 0, vj ∈ V
′
.

(28)

(29)

(30)

(31)
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Column Generation

If we don’t have an initial basic feasible solution, we can use artificial columns
or heuristics, among other methods.

It’s important to point out that, in this case (maximization), (RMP) gives a
lower bound (LB) of value z to the optimal solution z∗ of the original
problem, therefore z ≤ z∗.
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Column Generation

When we solve the auxiliary problem (AP), we are trying to find a new
column v ∈ V \ V ′

which will improve the value of the objective function.

Let π be the dual variable associated to constraints
∑

vj∈V′ (A1vj)λj ≤ b1 of
(RMP);

Let ν the dual variable associated to the constraint
∑

j :vj∈V′ λj = 1 of
(RMP).

(AP) : maximize (c⊤ − πA1)v − ν

subject to: A2v ≤ b2

v ≥ 0

(32)
(33)
(34)
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Observation

(AP) : maximize (c⊤ − πA1)v − ν

subject to: A2v ≤ b2

v ≥ 0

(35)
(36)
(37)

The auxiliary problem rates the vertices of feasible region of the subproblem
accordingly to the master problem. This is the role of the dual variables of the
master problem, which are present here, at the auxiliary problem. And that’s why
we have always a different vertex generated when solving the auxiliary
problem.
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Solving the master problem using of Column Generation

First step
Use a small subset of variables containing at least one column that produces a
feasible solution for the master problem;

Second step
Solve the current (RMP), also obtaining the values of the dual variables.

Third step
Solve the auxiliary problem. If we find a positive value for the objective function
of the auxiliary problem, we go to Fourth step. If we find zero as a value for the
objective function of the auxiliary problem, we conclude that there is no column to
be added to the master problem and thus the current solution is optimal.

Fourth step
If the auxiliary problem has returned a new column, insert this column to the
master problem and solve it. Go to Second step.
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Example

maximize 3x1 + 4x2 + 3x3 + 2x4

subject to: x1 + 2x2 ≤ 6
4x1 + 3x2 ≤ 12
2x3 + x4 ≤ 8
x3 + 5x4 ≤ 10
x1 + x2 + x3 + x4 ≤ 7
2x1 + x2 + x3 + 3x4 ≤ 17
x1, x2, x3, x4 ≥ 0.

(38)
(39)
(40)
(41)
(42)
(43)

Constraints (38) and (39) are in function of x1 and x2 and (40) and (41) are
in function of x3 and x4, which we can see as auxiliary problem 1 and
auxiliary problem 2;

The master problem is given by constraints (42) and (43).
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Example - Subproblem 1

maximize 3x1 + 4x2

subject to: x1 + 2x2 ≤ 6
4x1 + 3x2 ≤ 12
x1, x2 ≥ 0.

Extreme points:
F = (0, 0)
B = (0, 3)
E = (1.2, 2.4)
C = (3, 0).
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Example - original problem

maximize 3x1 + 4x2 + 3x3 + 2x4

subject to: x1 + 2x2 ≤ 6
4x1 + 3x2 ≤ 12
2x3 + x4 ≤ 8
x3 + 5x4 ≤ 10
x1 + x2 + x3 + x4 ≤ 7
2x1 + x2 + x3 + 3x4 ≤ 17
x1, x2, x3, x4 ≥ 0.

Here is the original problem just to remember.
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Example - Subproblem 2

maximize 3x3 + 2x4

subject to: 2x3 + x4 ≤ 8
x3 + 5x4 ≤ 10
x3, x4 ≥ 0.

Extreme points:
H = (0, 0)
D = (0, 2)
M = (3.3333.., 1.3333...)
A = (4, 0).
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Example

In general the problems are huge and the block structure allows us to choose
between entering one column at each iteration or as many columns as are the
number of subproblems;

We are going to see the solution of this example first adding one column at
each iteration and then, adding two columns (one for each subproblem) at
each iteration.
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Example - first iteration master problem - one column

Let’s begin with the column (0, 0, 0, 2), which means x1, x2, x3 = 0 and x4 = 2.
Objective function:

(3 4 3 2)


0
0
0
2

λ1.

Constraints:

(1 1 1 1)


0
0
0
2

λ1 ≤ 7.

(2 1 1 3)


0
0
0
2

λ1 ≤ 17.
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First iteration master problem - one column

maximize 4λ1

subject to: 2λ1 ≤ 7
6λ1 ≤ 17
λ1 = 1
λ1 ≥ 0.

λ∗
1 = 1, z̄ = 4, π∗

1 = π∗
2 = 0, ν∗1 = 4.
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Example

Once we have solved the master problem, the intuitive question is: is this the
optimal solution?

The auxiliary problem aims at finding a column which gives a positive gain
(in our case here), as we have seen at the revision.

As we are inserting one column at each iteration, we are going to have one
auxiliary problem;

If the auxiliary problem doesn’t return any column, so the solution found for
the master problem is optimal.
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Example - First iteration auxiliary problem - one column

maximize (3 − π1 − 2π2)x1 + (4 − π1 − π2)x2 + (3 − π1 − π2)x3 + (2 − π1 − 3π2)x4 − ν1

subject to: x1 + 2x2 ≤ 6

4x1 + 3x2 ≤ 12

2x3 + x4 ≤ 8

x3 + 5x4 ≤ 10

x1, x2, x3, x4 ≥ 0.

Remember that π1 = π2 = 0, ν1 = 4.

maximize 3x1 + 4x2 + 3x3 + 2x4 − 4

subject to: x1 + 2x2 ≤ 6

4x1 + 3x2 ≤ 12

2x3 + x4 ≤ 8

x3 + 5x4 ≤ 10

x1, x2, x3, x4 ≥ 0.

x∗1 = 1.2, x∗2 = 2.4, x∗3 = 3.33333, x∗4 = 1.33333 OF = 21.8666667.
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Example - Second iteration master problem - one column

Objective function:

(3 4 3 2)


1.2
2.4

3.33333
1.33333

λ2.

Constraints:

(1 1 1 1)


1.2
2.4

3.33333
1.33333

λ2 ≤ 7.

(2 1 1 3)


1.2
2.4

3.33333
1.33333

λ2 ≤ 17.
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Second iteration master problem - one column

maximize 4λ1 + 25.8666665λ2

subject to: 2λ1 + 8.266666λ2 ≤ 7
6λ1 + 12.1333332λ2 ≤ 17
λ1 + λ2 = 1
λ1, λ2 ≥ 0.

λ∗
1 = 0.20213, λ∗

2 = 0.79787, z̄ = 21.44680,

π∗
1 = 3.1290, π∗

2 = 0, ν∗1 = 0.
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Second iteration auxiliary problem - one column

maximize (3 − π1 − 2π2)x1 + (4 − π1 − π2)x2 + (3 − π1 − π2)x3 + (2 − π1 − 3π2)x4 − ν1

subject to: x1 + 2x2 ≤ 6

4x1 + 3x2 ≤ 12

2x3 + x4 ≤ 8

x3 + 5x4 ≤ 10

x1, x2, x3, x4 ≥ 0.

Remember that π∗
1 = 3.1290, π∗

2 = 0, ν∗1 = 0.

maximize − 0.129x1 + 0.871x2 − 0.129x3 − 1.129x4
subject to: x1 + 2x2 ≤ 6

4x1 + 3x2 ≤ 12

2x3 + x4 ≤ 8

x3 + 5x4 ≤ 10

x1, x2, x3, x4 ≥ 0.

x∗1 = 0, x∗2 = 3, x∗3 = x∗4 = 0 OF = 2.613.
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Example - Third iteration master problem - one column

Objective function:

(3 4 3 2)


0
3
0
0

λ3.

Constraints:

(1 1 1 1)


0
3
0
0

λ3 ≤ 7.

(2 1 1 3)


0
3
0
0

λ3 ≤ 17.
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Third iteration master problem - one column

maximize 4λ1 + 25.8666665λ2 + 12λ3

subject to: 2λ1 + 8.266666λ2 + 3λ3 ≤ 7
6λ1 + 12.1333332λ2 + 3λ3 ≤ 17
λ1 + λ2 + λ3 = 1
λ1, λ2, λ3 ≥ 0.

λ∗
1 = 0, λ∗

2 = 0.759493, λ3 = 0.24050, z̄ = 22.5316,

π∗
1 = 2.6329, π∗

2 = 0, ν∗1 = 4.1012.
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Third iteration auxiliary problem - one column

maximize (3 − π1 − 2π2)x1 + (4 − π1 − π2)x2 + (3 − π1 − π2)x3 + (2 − π1 − 3π2)x4 − ν1

subject to: x1 + 2x2 ≤ 6

4x1 + 3x2 ≤ 12

2x3 + x4 ≤ 8

x3 + 5x4 ≤ 10

x1, x2, x3, x4 ≥ 0.

Remember that π∗
1 = 2.6329, π∗

2 = 0, ν∗1 = 4.1012.

maximize 0.3671x1 + 1.3671x2 + 0.3671x3 − 0.6329x4 − 4.1012

subject to: x1 + 2x2 ≤ 6

4x1 + 3x2 ≤ 12

2x3 + x4 ≤ 8

x3 + 5x4 ≤ 10

x1, x2, x3, x4 ≥ 0.

x∗1 = 0, x∗2 = 3, x∗3 = 4, x∗4 = 0 OF = 1.4685.
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Example - Fourth iteration master problem - one column

Objective function:

(3 4 3 2)


0
3
4
0

λ4.

Constraints:

(1 1 1 1)


0
3
4
0

λ4 ≤ 7.

(2 1 1 3)


0
3
4
0

λ4 ≤ 17.
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Fourth iteration master problem - one column

maximize 4λ1 + 25.8666665λ2 + 12λ3 + 24λ4

subject to: 2λ1 + 8.266666λ2 + 3λ3 + 7λ4 ≤ 7
6λ1 + 12.1333332λ2 + 3λ3 + 7λ4 ≤ 17
λ1 + λ2 + λ3 + λ4 = 1
λ1, λ2, λ3, λ4 ≥ 0.

λ∗
1 = λ∗

2 = λ3 = 0, λ4 = 1, z̄ = 24,

π∗
1 = 3, π∗

2 = 0, ν∗1 = 3.
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Fourth iteration auxiliary problem - one column

maximize (3 − π1 − 2π2)x1 + (4 − π1 − π2)x2 + (3 − π1 − π2)x3 + (2 − π1 − 3π2)x4 − ν1

subject to: x1 + 2x2 ≤ 6

4x1 + 3x2 ≤ 12

2x3 + x4 ≤ 8

x3 + 5x4 ≤ 10

x1, x2, x3, x4 ≥ 0.

Remember that π∗
1 = 3, π∗

2 = 0, v∗
1 = 3.

maximize x2 − x4 − 3

subject to: x1 + 2x2 ≤ 6

4x1 + 3x2 ≤ 12

2x3 + x4 ≤ 8

x3 + 5x4 ≤ 10

x1, x2, x3, x4 ≥ 0.

x∗1 = 0, x∗2 = 3, x∗3 = 0, x∗4 = 0 FO = 0. We can see that there is no column which improves
the value of the objective function of the master problem. The conclusion is that we already
reached the optimal solution.
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Example - optimal solution

The optimal solution is:

x∗1 = 0, x∗2 = 3, x∗3 = 4, x∗4 = 0

λ∗
1 = λ∗

2 = λ3 = 0, λ4 = 1, z̄ = 24

and we can see that it is a vertex from subproblems 1 and 2, because it’s not a
combination of vertices, since we have only λ4 = 1, otherwise we would have more
than one λi with positive value.
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Example

Now we are going to solve the same problem but adding two columns at each
iteration;

it’s a choice between solve one big auxiliary problem or solve many smaller
problems of it;

as the subproblems are idependent of each other, we can parallelize their
execution (it will be very clear to see at the example);

we are going to start at the same vertex we did previously.
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Example - original problem

maximize 3x1 + 4x2 + 3x3 + 2x4

subject to: x1 + 2x2 ≤ 6
4x1 + 3x2 ≤ 12
2x3 + x4 ≤ 8
x3 + 5x4 ≤ 10
x1 + x2 + x3 + x4 ≤ 7
2x1 + x2 + x3 + 3x4 ≤ 17
x1, x2, x3, x4 ≥ 0.
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Example - First iteration master problem

Let’s begin with the columns (0, 0) and (0, 2) which means x1, x2, x3 = 0 and
x4 = 2. Below we calculate the coefficients of the master problem using the two
first columns. We are going to use λi12 for variables 1 and 2 given by the first
column if the i-th iteration and λi34.
Objective function:

(3 4)
(

0
0

)
λ112 + (3 2)

(
0
2

)
λ134 = 4λ134.

Constraints:

(1 1)
(

0
0

)
λ112 + (1 1)

(
0
2

)
λ134 ≤ 7.

(2 1)
(

0
0

)
λ112 + (1 3)

(
0
2

)
λ134 ≤ 17.
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First iteration master problem

maximize 4λ134

subject to: 2λ134 ≤ 7
6λ134 ≤ 17
λ112 = 1
λ134 = 1
λ112, λ134 ≥ 0.

(44)

λ∗
112 = 1, λ∗

134 = 1, z̄ = 4, π∗
1 = π∗

2 = ν∗1 = 0, ν∗2 = 4.
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Example - First iteration auxiliary problem 1

maximize (3 − π1 − 2π2)x1 + (4 − π1 − π2)x2 − ν1

subject to: x1 + 2x2 ≤ 6
4x1 + 3x2 ≤ 12
x1, x2 ≥ 0.

Remember that π1 = π2 = ν1 = 0, ν2 = 4.

maximize 3x1 + 4x2

subject to: x1 + 2x2 ≤ 6
4x1 + 3x2 ≤ 12
x1, x2 ≥ 0.

x∗1 = 1.2, x∗2 = 2.4,OF = 13.2.
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Example - First iteration auxiliary problem 2

maximize (3 − π1 − π2)x3 + (2 − π1 − 3π2)x4 − ν2

subject to: 2x3 + x4 ≤ 8
x3 + 5x4 ≤ 10
x3, x4 ≥ 0.

Remember that π1 = π2 = ν1 = 0, ν2 = 4.

maximize 3x3 + 2x4 − 4
subject to: 2x3 + x4 ≤ 8

x3 + 5x4 ≤ 10
x3, x4 ≥ 0.

x∗3 = 3.33333..., x∗4 = 1.33333...,OF = 8.666667....
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Example - second iteration master problem

Solving auxiliary problems 1 and 2, two columns were generated:
column 1 = (1.2 2.4) and column 2 = (3.33333 1.33333).
Calculating the coefficients of the master problem using these two columns.
Objective function:

(3 4)
(

1.2
2.4

)
λ212 + (3 2)

(
3.33333
1.33333

)
λ234 = 13.2λ212 + 12.666665λ234.

Constraints:

(1 1)
(

1.2
2.4

)
λ212 + (1 1)

(
3.33333
1.33333

)
λ234 ≤ 7.

(2 1)
(

1.2
2.4

)
λ212 + (1 3)

(
3.33333
1.33333

)
λ234 ≤ 17.
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Second iteration master problem

maximize 4λ134 + 13.2λ212 + 12.666665λ234

subject to: 2λ134 + 3.6λ212 + 4.66666λ234 ≤ 7
6λ134 + 4.8λ212 + 7.333332λ234 ≤ 17
λ112 + λ212 = 1
λ134 + λ234 = 1

λ∗
112 = 0, λ∗

134 = 0.47499, λ∗
212 = 1, λ∗

234 = 0.525, z̄ = 21.75,

π∗
1 = 2.71428, π∗

2 = ν∗2 = 0, ν∗1 = 3.42855.
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Second iteration auxiliary problem 1

maximize (3 − π1 − 2π2)x1 + (4 − π1 − π2)x2 − ν1

subject to: x1 + 2x2 ≤ 6
4x1 + 3x2 ≤ 12
x1, x2 ≥ 0.

Remember that π∗
1 = 2.71428, π∗

2 = ν∗2 = 0, ν∗1 = 3.42855.

maximize 0.28572x1 + 1.28572x2 − 3.42855
subject to: x1 + 2x2 ≤ 6

4x1 + 3x2 ≤ 12
x1, x2 ≥ 0.

x∗1 = 0 , x∗2 = 3 ,OF = 0.42861.
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Example - Second iteration auxiliary problem 2

maximize (3 − π1 − π2)x3 + (2 − π1 − 3π2)x4 − ν2

subject to: 2x3 + x4 ≤ 8
x3 + 5x4 ≤ 10
x3, x4 ≥ 0.

Remember that π∗
1 = 2.71428, π∗

2 = ν∗2 = 0, ν∗1 = 3.42855.

maximize 0.28572x3 − 0.71428x4

subject to: 2x3 + x4 ≤ 8
x3 + 5x4 ≤ 10
x3, x4 ≥ 0.

x∗3 = 4, x∗4 = 0, OF = 1.14288
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Example - third iteration master problem

Solving auxiliary problems 1 and 2, two columns were generated:
column 1 = (0 3) and column 2 = (4 0).
Calculating the coefficients of the master problem using these two columns.
Objective function:

(3 4)
(

0
3

)
λ312 + (3 2)

(
4
0

)
λ334 = 12λ312 + 12λ334.

Constraints:

(1 1)
(

0
3

)
λ312 + (1 1)

(
4
0

)
λ334 ≤ 7.

(2 1)
(

0
3

)
λ312 + (1 3)

(
4
0

)
λ334 ≤ 17.
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Third iteration master problem

maximize 4λ134 + 13.2λ212 + 12.666665λ234 + 12λ312 + 12λ334

subject to: 2λ134 + 3.6λ212 + 4.66666λ234 + 3λ312 + 4λ334 ≤ 7
6λ134 + 4.8λ212 + 7.333332λ234 + 3λ312 + 4λ334 ≤ 17
λ112 + λ212 + λ312 = 1
λ134 + λ234 + λ334 = 1

λ∗
112 = λ∗

212 = λ∗
134 = λ∗

234 = 0, λ∗
312 = λ∗

334 = 1, z̄ = 24,

π∗
1 = 3, π∗

2 = ν∗2 = 0, ν∗1 = 3.
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Third iteration auxiliary problem 1

maximize (3 − π1 − 2π2)x1 + (4 − π1 − π2)x2 − ν1

subject to: x1 + 2x2 ≤ 6
4x1 + 3x2 ≤ 12
x1, x2 ≥ 0.

Remember that π∗
1 = 3, π∗

2 = ν∗2 = 0, ν∗1 = 3.

maximize x2 − 3
subject to: x1 + 2x2 ≤ 6

4x1 + 3x2 ≤ 12
x1, x2 ≥ 0.

x∗1 = 0 , x∗2 = 3 ,OF = 0.
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Example - Third iteration auxiliary problem 2

maximize (3 − π1 − π2)x3 + (2 − π1 − 3π2)x4 − ν2

subject to: 2x3 + x4 ≤ 8
x3 + 5x4 ≤ 10
x3, x4 ≥ 0.

Remember that π∗
1 = 2.71428, π∗

2 = ν∗2 = 0, ν∗1 = 3.42855.

maximize − x4

subject to: 2x3 + x4 ≤ 8
x3 + 5x4 ≤ 10
x3, x4 ≥ 0.

x∗3 = x∗4 = 0, OF = 0
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Example

Neither the auxiliary problem 1 nor the auxiliary problem 2 produced columns
which would increase the value of the objective function of the master
problem, therefore the current solution is optimal;

Optimal solution: x∗1 = 0, x∗2 = 3, x∗3 = 4, x∗4 = 0, λ312 = λ334 = 1;

We can see that the optimal solution is one vertex of the feasible region of
the subproblems and not a vertex in the intersection with the master
problem, because in this case, it would be a linear combination of vertices of
the subproblems.
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Exercise

You have 30 minutes to complete exercise 1.
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Column Generation - important observations

The solution of the Auxiliary Problem (AP) will always be a vertex of its
feasible region;

the optimum value of (AP) is be given by [(c⊤ − πAk)vj − ν];

If we call z̄ the optimal value of the objective function of RMP at each
iteration OF the optimal value of the auxiliary problem (AP) at each
iteration, we have:

z̄ gives a lower bound for RMP at each iteration;

z̄ + OF gives an upper bound for RMP at each iteration;

So, at each iteration we have z̄ ≤ RMP value ≤ z̄ + OF

The problem is: there is no guarantee that the upper bound of iteration j is
greater than the upper bound calculated at iteration j + 1, which means that
the upper bound doesn’t have a monotone behaviour throughout the
iterations (see [6]).
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Integer programming problems

Both Dantzig-Wolfe decomposition and column generation are being used
nowadays to solve integer programming problems (IP);

(IP) : maximize z = c⊤x

subject to: Ax ≤ b

x ≥ 0 and integer.

In general, integer programming problems are solved relaxing the integer
constraint, which means solving the its linear relaxation, and then applying a
Branch and Bound technique;

In column generation we relax the Master problem and look for an integer
column at the Auxiliary problem;

Before starting column generation for integer programming problems, we are
going to revise some important aspects of Integer programming.
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Integer Programming - revision

Definition
A subset of Rn described by a finite set of linear constraints
P = {x ∈ Rn : Ax ≤ b} is a polyhedron.

Definition
A polyhedron P ⊆ Rn+p is a formulation for a set X ⊆ Zn ×Rp if and only if
X = P ∩ (Zn ×Rp).
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Integer Programming - revision

If we had the convex hull of every integer problem, it would be easy to solve
them;

  

Motivação

  

Motivação

  

Motivação
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Integer Programming - revision

As we don’t have this information, we work with the relaxed problem and
then look for the integer solution using Branch and Bound;

We already know that rounding the solution found solving the linear
relaxation isn’t the right thing to do.

Ana Flávia U. S. Macambira Column Generation - Part I 87 / 118



Integer Programming - revision

As we can see at this example of [7]:

(IP) : maximize z = x1 + 0.64x2

subject to: 50x1 + 31x2 ≤ 250
3x1 − 2x2 ≥ −4 x1, x2 ≥ 0 and integer.

The solution of the relaxed problem is at B = ( 376
193 ,

950
193 ) and the integer solution

is at A = (5, 0).
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Integer Programming - revision

A good formulation is an important step in the direction of successfully solve
an integer problem.

We can see at the figure below a blue region. It is the convex hull of the
integer points of a generic problem.

The polytope formed with a thin line is a representation of a better
formulation comparing to the polytope formed with a thick line.
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Integer Programming - revision

Better formulations for the relaxed problems have feasible regions "nearest"
to the convex hull of its integer points;

"Tighest" feasible regions of relaxed problems produces smaller gaps, which
means that the gap between the relaxed solution and the integer solution of a
good formulation is smaller than in a not very good formulation.

The tree created by Branch and Bound technique is smaller when the gap
between the relaxed solution and the integer solution is small.
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Integer Programming - revision

One example of study of better formulation is the subtour elimination constraint
for the Minimum Spanning Tree formulation.

Let G = (V ,E ) be an undirected graph with vertex set V where |V | = n and
edge set E , with |E | = m.

Remember that an edge in an undirected graph is an unordered pair
e = {i , j}, i , j ∈ V , i ̸= j .

For every e ∈ E there is a cost ce .

Let E ′ ⊆ E . If G ′ = (V ,E ′) is a tree and all vertices are reached by at least
one edge, so G ′ is called a spanning tree.

The cost of the tree is the sum of the costs of its edges.

The Minimum Spanning Tree (MST) problem consists of finding a spanning
tree of minimum cost.
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Minimum Spanning Tree formulation

Let xij = 1 if the edge ij is at the tree T ;

We need one constraint to ensure that there are n − 1 edges in T ;∑
ij∈E

xij = n − 1

We need another constraint to guarantee that there is no cycles in T .
Subtour elimination constraint. Any subset of k vertices must have at most
k − 1 edges contained in that subset.∑

ij∈E :i∈S,j∈S

xij ≤ |S | − 1 ∀S ⊆ V , S ̸= ∅
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MST formulation 1 - Subtour elimination formulation

minimize
∑
ij∈E

cijxij

subject to:
∑
ij∈E

xij = n − 1

∑
ij∈E :i∈S,j∈S

xij ≤ |S | − 1 ∀S ⊆ V , S ̸= ∅

xij ∈ {0, 1} ∀ij ∈ E .
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The definition of tree used by MST formulation 1 is a subgraph containing
n − 1 edges and no cycles;

Using the definition of a tree as a connected graph containing n − 1 edges,
we can have another formulation;

In order to guarantee that the tree is connected, given a subset S of V , we
define the cutset δ(S)

δ(S) = {ij ∈ E |i ∈ S , j /∈ S}

We can see that δ(i) is the set of edges which incides on vertex i . The
conectivity of the tree can be described by the constraints:∑

ij∈δ(S)

xij ≥ 1, S ⊆ E , S ̸= ∅
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MST formulation 2 - Cutset formulation

minimize
∑
ij∈E

cijxij

subject to:
∑
ij∈E

xij = n − 1

∑
ij∈δ(S)

xij ≥ 1, S ⊆ V , S ̸= ∅

xij ∈ {0, 1} ∀ij ∈ E .
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Formulations 1 and 2 have an exponential number of constraints;

It can be proved that the subtour elimination formulation is stronger than the
cutset formulation;

I suggest reading [8].

Ana Flávia U. S. Macambira Column Generation - Part I 96 / 118



Integer Programming - revision - Branch and Bound

Branch and Bound uses the Simplex Method combined to a divide and
conquer strategy;

the divide and conquer strategy appears after the relaxed problem is solved;

if the relaxed problem doesn’t give an integer solution, which is the expected
scenario, subproblems are generated with additional constraints on these
variables.
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But what happens if all variables of the relaxed problem are continuous and
we want them to be integer, we are going to subdivide each one of them in
two?

If we run a complete enumeration, the method becomes impracticable;

Thus we make an implicit enumeration.
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Implicit enumeration is based on a pruning mechanism and the non-promising
branches are not examined;

We use the information about bounds of the current solution and this
information helps us to prune several nodes.
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Integer Problem

maximize 3x1 + 4x2

subject to: − 3x1 + 2x2 ≤ 2
x1 + 3x2 ≤ 11
x1 + x2 ≤ 6
x1, x2 ≥ 0 and integer.

Relaxed Problem

maximize 3x1 + 4x2

subject to: − 3x1 + 2x2 ≤ 2
x1 + 3x2 ≤ 11
x1 + x2 ≤ 6
x1, x2 ≥ 0
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The figure below shows the graphical representation of the relaxed problem and its
integer points.

We can see that the solution of the relaxed problem is (3.5, 2.5).
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Choosing variable x1 to branch, we have:

maximize 3x1 + 4x2

subject to: − 3x1 + 2x2 ≤ 2
x1 + 3x2 ≤ 11
x1 + x2 ≤ 6
x1 ≥ 4
x1, x2 ≥ 0.

maximize 3x1 + 4x2

subject to: − 3x1 + 2x2 ≤ 2
x1 + 3x2 ≤ 11
x1 + x2 ≤ 6
x1 ≤ 3
x1, x2 ≥ 0
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maximize 3x1 + 4x2
subject to: − 3x1 + 2x2 ≤ 2

x1 + 3x2 ≤ 11

x1 + x2 ≤ 6

x1 ≥ 4

x1, x2 ≥ 0.

maximize 3x1 + 4x2
subject to: − 3x1 + 2x2 ≤ 2

x1 + 3x2 ≤ 11

x1 + x2 ≤ 6

x1 ≤ 3

x1, x2 ≥ 0
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We only pruned one node in the example we saw, and this prune was made
by optimality;

It’s important to observe that the tree can get very big;

In Branch and Bound technique, we prune the nodes based on some aspects
as bound, feasibility and optimality;

Solving the relaxed maximization problem gives us an upper bound u on the
objective value of the original problem;

The value of the objective function of a feasible solution of a maximization
problem gives a lower bound l on the objective value of the original problem.
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The incumbent is a feasible solution for the IP problem and it is the best
solution so far in the B&B search.

We say a node is active if it hasn’t been pruned and if its (LP) has not been
solved yet.

We can prune the active node k if its optimal objective function value is
lesser or equal the value of the objective function given by the incumbent.
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maximize 4x1 − x2

subject to: 3x1 − 2x2 ≤ 14
2x1 − 2x2 ≤ 3
x2 ≤ 3
x1, x2 ≥ 0 and integer.

maximize 4x1 − x2

subject to: 3x1 − 2x2 + x3 = 14
2x1 − 2x2 + x4 = 3
x2 + x5 = 3
x1, ..., x5 ≥ 0
x1, ..., x5 integer.
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Solve the relaxed problem

maximize 4x1 − x2

subject to: 3x1 − 2x2 + x3 = 14
2x1 − 2x2 + x4 = 3
x2 + x5 = 3
x1, x2, x3, x4, x5 ≥ 0

x∗ = (4.5, 3, 6.5, 0, 0), OF = 15.

Choosing x1 to branch, we have:
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Solving LP1 we obtain
x∗ = (4, 2.5, 7, 4, 0) and
OF = 13.5, thus u = 13.5;
As the solution of LP1 isn’t
feasible for the integer problem,
our lower bound l continues
l = −∞;
LP2 is infeasible, so we prune
this node by infeasibility.
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The only fractionary variable is x2, so we branch on it.
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Solving LP3 we have
x∗ = (3.5, 2, 7.5, 1, 0) and OF = 12,
which means u = 12.

Solving LP4 we have
x∗ = (4, 3, 8, 1, 0), which means
u = 13. and l = 13. As this solution
is feasible for the integer problem,
we have l = 13, so we reached the
optimal solution in this node. This is
the incumbent so far.
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Branch and Bound implementation

There is a package named BranchAndBound in Julia;

You can find an implementation of Branch and Bound using this package and
solving a short example at
https://juliahub.com/ui/Packages/BranchAndBound/0t5a1/0.1.0
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