TSP Dantzig-Wolfe Decomposition - Column generation with 1-trees

Correction

X is the set of 1-Trees (contained in the complete graph). The complete graph K_n has *n* vertices numbered 1,...,*n*. Edges of K_n are denoted by *E*. Each edge *e* of the complete graph has a cost c_e .

A 1-tree is a partial graph of K_n such that vertices 2, 3,..., *n* are covered by a tree and vertex 1 is connected by 2 edges to two vertices in 2, 3,..., *n*. The degree of vertex 1 is equal to 2. See the example below in K_5 .

Figure 1: exemple de 1-arbre à 5 sommets

Question 1.

We search for a 1-Tree of degree 2 on every vertices, and of minimal cost.

A 1-tree with degree 2 on each vertex is a cycle that goes through each vertex. So, we search an hamiltonian cycle of minimal cost.

We can modelize this problem by the following program (M) in 0-1 variables :

$$\min_{\lambda} \sum_{i=1}^{|X|} c(\chi_i) \lambda_i$$

Subject to
$$\begin{cases} \sum_{i=1}^{|X|} d_j(\chi_i) \lambda_i = 2 \quad j = 2, ..., n \text{ (constaints degree for vertex j)} \\ \sum_{i=1}^{|X|} \lambda_i = 1 \quad (convexity) \\ \lambda_i \in \{0,1\} \ i = 1, ..., |X| \end{cases}$$

with

 $c(\chi)$ cost of 1-Tree χ

 $d_i(\chi)$ degree of vertex j in 1-Tree χ

The convexity constraint is to select exactly one 1-tree

Question 2.

Now, we consider linear program (ML) where the 0-1 variables λ_i are relaxed to $\lambda_i \ge 0$.

 μ_j is the dual variable related to the constraint degree of vertex j=2,...,n and η dual variable related to convexity constraint.

Now, we concentre on the subproblem. The aim of the subproblem is to find a variable of minimum reduced cost.

In order to simplify the presentation, the best is to introduce virtually a constraint degree on vertex 1 with a dual variable $\mu_1 = 0$.

In order to describe 1-tree χ_i let us introduce the following notations :

 $a_{i,e} = 1$ if edge e is in $1 - tree \chi_i$ and $a_{i,e} = 0$ otherwise

The cost of variable λ_i is $c(\chi_i) = \sum_{e \in E} c_e a_{i,e}$

 $\delta(j)$ is the set of edges *e* starting from $j : \delta(j) = \{e \in E : j \in e\}$

The degree of vertex j in 1-tree χ_i is $d_j(\chi_i) = \sum_{e \in \delta(j)} a_{i,e}$

Reduced cost of λ_i is $c(\chi_i) - \sum_{j=1}^n \mu_j d_j(\chi_i) - \eta = \sum_{e \in E} c_e a_{i,e} - \sum_{j=1}^n \mu_j \sum_{e \in \delta(j)} a_{i,e} - \eta = \sum_{e=(j,j') \in E} (c_e - \mu_j - \mu_{j'}) a_{i,e} - \eta$

So solving the subproblem is equivalent to search a 1-tree of minimum cost with edge cost $c'_{e=(j,j')} = c_e - \mu_j - \mu_{j'}$. This is done by solving minimum cost tree (with cost c') on vertices 2, 3,..., *n* and once this is done, by adding the 2 minimum cost edges (with cost c') starting from vertex 1. The minimum cost tree can be solved by polynomial time Kruskal algorithm.

Question 3

We consider K_5 . The edge costs are the following :

Costs	Vertex 1	Vertex 2	Vertex 3	Vertex 4	Vertex 5
Vertex 1		7	2	1	5
Vertex 2			3	6	8
Vertex 3				4	2
Vertex 4				•	9

We consider the following 1-trees

Figure 3: 1-arbre numéro 2

Figure 4: 1-arbre numéro 3

3

Question 3.1

We write the problem (ML) restricted to the three 1-trees given above.

(MLR)

$$\min_{\lambda} 21\lambda_1 + 18\lambda_2 + 22\lambda_3$$

Subject to
$$\begin{cases} 2\lambda_1 + 2\lambda_2 + 2\lambda_3 = 2 \quad (v2) \\ 2\lambda_1 + 3\lambda_2 + 1\lambda_3 = 2 \quad (v3) \\ 3\lambda_1 + 1\lambda_2 + 2\lambda_3 = 2 \quad (v4) \\ 1\lambda_1 + 2\lambda_2 + 3\lambda_3 = 2 \quad (v5) \\ \lambda_1 + \lambda_2 + \lambda_3 = 1 \quad (convexity) \\ \lambda_1, \lambda_2, \lambda_3 \ge 0 \end{cases}$$

Question 3.2

Here, we give the primal and dual solutions of the previous (MLR), and we want to find a new column if there is, to introduce in (MLR).

Primal solution $\lambda_1 = \lambda_2 = \lambda_3 = \frac{1}{3}$ Primal objective=20+1/3

Dual solution $\mu_2=2, \mu_3=0, \mu_4=2+\frac{1}{3}, \mu_5=2-\frac{1}{3}$, $\eta=8+\frac{1}{3}$

Dual Objective=12+8+1/3=20+1/3

We can check the dual solution : reduced costs of λ_1 , λ_2 , λ_3 must be nonnegative.

For
$$\lambda_1 : 21 - 2\mu_2 - 2\mu_3 - 3\mu_4 - \mu_5 - \eta = 21 - 4 - 0 - 6 - 1 - 2 + 1/3 - 8 - 1/3 = 21 - 21 = 0$$

For $\lambda_2 : 18 - 2\mu_2 - 3\mu_3 - \mu_4 - 2\mu_5 - \eta = 18 - 4 - 0 - 2 - 1/3 - 4 + 2/3 - 8 - 1/3 = 18 - 18 = 0$
For $\lambda_3 : 22 - 2\mu_2 - \mu_3 - 2\mu_4 - 3\mu_5 - \eta = 22 - 4 - 0 - 4 - 2/3 - 6 + 1 - 8 - 1/3 = 22 - 22 = 0$
So, the primal and dual solutions are optimal.

Solving subproblem.

Data : costs and dual variables

μ	Vertex1	Vertex2 = 2	Vertex3 = 0	Vertex4=2+1/3	Vert.5=2-1/3
Vertex1		7	2	1	5
Vertex2 = 2			3	6	8
Vertxx3 = 0				4	2
Vertex4=2+1/3					9

Then reduced costs

μ	Vertex1	Vertex2 = 2	Vertex3 = 0	Vertex4=2+1/3	Vert.5=2-1/3
Vertex1		7-2	2	1-2-1/3	5-2+1/3
Vertex2 = 2			3-2	6-2-2-1/3	8-2-2+1/3
Vertex3 = 0				4-2-1/3	2-2+1/3
Vertex4=2+1/3					9-2-1/3-2+1/3

μ	<mark>Vertex1</mark>	Vertex2 = 2	Vertex3 = 0	Vertex4=2+1/3	Vert.5=2-1/3
Vertex1		<mark>5</mark>	<mark>2</mark>	<mark>-1-1/3</mark>	<mark>3+1/3</mark>
Vertex2 = 2			1	2-1/3	4+1/3
Vertex3 = 0				2-1/3	1/3
Vertex4=2+1/3					5

We compute a minimum spanning tree on vertices 2, 3, 4, 5

Edge (3,5) reduced cost 1/3,

Edge (2,3) reduced cost 1

Edege (2,4) reduced cost 2-1/3

Then we add the two edges of minimum reduced costs starting from vertex 1

Edges (1,4) reduced cost -1-1/3

Edge (1,3) reduced cost 2,

Reduced cost of this 1-tree is : 4-1/3 plus -8-1/3 (for the convexity constraint) which is $-4 - \frac{2}{3} < 0$

The cost of this 1-tree is 14. Degrees for vertices from 2 to 5 are 2, 3, 2, 1. We can check the reduced cost of this 1-tree as if this column were in (MLR) :

reduced cost is $14 - 2\mu_2 - 3\mu_3 - 2\mu_4 - 1\mu_5 - \eta = 14 - 4 - 0 - 4 - \frac{2}{3} - 2 + \frac{1}{3} - 8 - \frac{1}{3} = 4 - \frac{1}{3} - 8 - \frac{1}{3} = 4 - \frac{1}{3} - 8 - \frac{1}{3} = -4 - \frac{2}{3}$. The result is correct.

A lower bound of (ML) is the value of (MLR) plus the reduced cost = 20+1/3 - 4 - 2/3 = 16 - 1/3.

We denote by λ_4 the variable of the new 1-tree and add this variable to (MLR)

Question 3.3

The new (MLR) is the following :

(MLR)

$$\min_{\lambda} 21\lambda_1 + 18\lambda_2 + 22\lambda_3 + 14\lambda_4$$

Subject to
$$\begin{cases} 2\lambda_1 + 2\lambda_2 + 2\lambda_3 + 2\lambda_4 = 2 \quad (v2) \\ 2\lambda_1 + 3\lambda_2 + 1\lambda_3 + 3\lambda_4 = 2 \quad (v3) \\ 3\lambda_1 + 1\lambda_2 + 2\lambda_3 + 2\lambda_4 = 2 \quad (v4) \\ 1\lambda_1 + 2\lambda_2 + 3\lambda_3 + 1\lambda_4 = 2 \quad (v5) \\ \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = 1 \quad (convexity) \\ \lambda_1, \lambda_2, \lambda_3, \lambda_4 \ge 0 \end{cases}$$

Here, we give the primal and dual solutions of this last (MLR), and we want to find a new column if there is, to introduce in (MLR).

Primal solution $\lambda_1 = \lambda_2 = 0, \lambda_3 = \lambda_4 = \frac{1}{2}$; Primal objective=18 Dual solution $\mu_2 = 3, \mu_3 = 0, \mu_4 = 0, \mu_5 = 4, \eta = 4$; Dual objective=14+4=18 We can check the dual solution i.e. reduced costs of $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ must be nonnegative. For $\lambda_1 : 21 - 2\mu_2 - 2\mu_3 - 3\mu_4 - \mu_5 - \eta = 21 - 6 - 0 - 0 - 4 - 4 = 21 - 14 \ge 0$ For $\lambda_2 : 18 - 2\mu_2 - 3\mu_3 - \mu_4 - 2\mu_5 - \eta = 18 - 6 - 0 - 0 - 8 - 4 = 18 - 18 = 0$ For $\lambda_3 : 22 - 2\mu_2 - \mu_3 - 2\mu_4 - 3\mu_5 - \eta = 22 - 6 - 0 - 0 - 12 - 4 = 22 - 22 = 0$ For $\lambda_4 : 14 - 2\mu_2 - 3\mu_3 - 2\mu_4 - \mu_5 - \eta = 14 - 6 - 0 - 0 - 4 - 4 = 14 - 14 = 0$ So, the primal and dual solutions are optimal

So, the primal and dual solutions are optimal.

Solving the subproblem

Data : costs and dual variables

μ	Vertex1	Vertex2 = 3	Vertex3 = 0	Vertex4 = 0	Vertex5 = 4
Vertex1		7	2	1	5
Vertex2 = 3			3	6	8
Vertxx3 = 0				4	2
Vertex4 = 0				•	9

Reduced costs

μ	Vertex1	Vertex2 = 3	Vertex3 = 0	Vertex4 = 0	Vertex5 = 4
Vertex1		7-3	2	1	5-4
Vertex2 = 3			3-3	6-3	8-3-4
Vertxx3 = 0				4	2-4
Vertex4 = 0					9-4

μ	Vertex1	Vertex2 = 3	Vertex3 = 0	Vertex4 = 0	Vertex5 = 4
<mark>Vertex1</mark>		<mark>4</mark>	<mark>2</mark>	<mark>1</mark>	<mark>1</mark>
Vertex2 = 3			0	3	1
Vertxx3 = 0				4	-2
Vertex4 = 0					5

We compute a minimum spanning tree on vertices 2, 3, 4, 5

Edge (3,5) reduded cost= -2

Edge (2,3) reduced cost=0

 \rightarrow Edge (2,5) reduced cost=1, is not introduced because it makes a cycle

Edge (2,4) reduced cost=3

Then we add the two edges of minimum reduced costs starting from vertex 1

Edge (1,4) reduced cost=1

Edge (1,5) reduced cost=1

The reduced cost of this 1-tree is : 3 plus -4 (for the convexity constraint) . The total is -1

We note that this 1-tree is a cycle because the degree of each vertex is equal to 2. The cost of this 1-tree is 17.

A lower bound of (ML) is the value of (MLR) plus the reduced cost = 18 - 1 = 17.

So, the cycle is reaching this lower bound, so it is optimal. We can stop the algorithm.