TSP Dantzig-Wolfe Decomposition - Column generation with 1-trees

Correction

X is the set of 1 -Trees (contained in the complete graph). The complete graph K_{n} has n vertices numbered $1, \ldots, n$. Edges of K_{n} are denoted by E. Each edge e of the complete graph has a cost c_{e}.

A 1-tree is a partial graph of K_{n} such that vertices $2,3, \ldots, n$ are covered by a tree and vertex 1 is connected by 2 edges to two vertices in $2,3, \ldots, n$. The degree of vertex 1 is equal to 2 . See the example below in K_{5}.

Figure 1: exemple de 1-arbre à 5 sommets

Question 1.

We search for a 1-Tree of degree 2 on every vertices, and of minimal cost.
A 1-tree with degree 2 on each vertex is a cycle that goes through each vertex. So, we search an hamiltonian cycle of minimal cost.

We can modelize this problem by the following program (M) in 0-1 variables :

$$
\min _{\lambda} \sum_{i=1}^{|X|} c\left(\chi_{i}\right) \lambda_{i}
$$

Subject to $\left\{\begin{array}{r}\sum_{i=1}^{|X|} d_{j}\left(\chi_{i}\right) \lambda_{i}=2 j=2, \ldots, n \text { (constaints degree for vertex } \mathrm{j} \text {) } \\ \sum_{i=1}^{|X|} \lambda_{i}=1 \quad(\text { convexity }) \\ \lambda_{i} \in\{0,1\} i=1, \ldots,|X|\end{array}\right.$
with
$c(\chi)$ cost of 1-Tree χ
$d_{j}(\chi)$ degree of vertex j in 1-Tree χ
The convexity constraint is to select exactly one 1-tree

Question 2.

Now, we consider linear program (ML) where the 0-1 variables λ_{i} are relaxed to $\lambda_{i} \geq 0$.
μ_{j} is the dual variable related to the constraint degree of vertex $\mathrm{j}=2, \ldots, \mathrm{n}$ and η dual variable related to convexity constraint.

Now, we concentre on the subproblem. The aim of the subproblem is to find a variable of minimum reduced cost.

In order to simplify the presentation, the best is to introduce virtually a constraint degree on vertex 1 with a dual variable $\mu_{1}=0$.

In order to describe 1-tree χ_{i} let us introduce the following notations:
$a_{i, e}=1$ if edge e is in $1-$ tree χ_{i} and $a_{i, e}=0$ otherwise
The cost of variable λ_{i} is $c\left(\chi_{i}\right)=\sum_{e \in E} c_{e} a_{i, e}$
$\delta(j)$ is the set of edges e starting from $\mathrm{j}: \delta(j)=\{e \in E: j \in e\}$
The degree of vertex j in 1-tree χ_{i} is $d_{j}\left(\chi_{i}\right)=\sum_{e \in \delta(j)} a_{i, e}$
Reduced cost of λ_{i} is $c\left(\chi_{i}\right)-\sum_{j=1}^{n} \mu_{j} d_{j}\left(\chi_{i}\right)-\eta=\sum_{e \in E} c_{e} a_{i, e}-\sum_{j=1}^{n} \mu_{j} \sum_{e \in \delta(j)} a_{i, e}-\eta=$ $\sum_{e=\left(j, j^{\prime}\right) \in E}\left(c_{e}-\mu_{j}-\mu_{j^{\prime}}\right) a_{i, e}-\eta$

So solving the subproblem is equivalent to search a 1-tree of minimum cost with edge $\operatorname{cost} c_{e=\left(j, j^{\prime}\right)}^{\prime}=$ $c_{e}-\mu_{j}-\mu_{j^{\prime}}$. This is done by solving minimum cost tree (with cost c') on vertices $2,3, \ldots, n$ and once this is done, by adding the 2 minimum cost edges (with cost c^{\prime}) starting from vertex 1 . The minimum cost tree can be solved by polynomial time Kruskal algorithm.

Question 3

We consider K_{5}. The edge costs are the following :

Costs	Vertex 1	Vertex 2	Vertex 3	Vertex 4	Vertex 5
Vertex 1	.	7	2	1	5
Vertex 2		.	3	6	8
Vertex 3			.	4	2
Vertex 4				.	9

We consider the following 1-trees

Figure 2: 1-arbre numéro 1

Figure 3: 1-arbre numéro 2

Figure 4: 1-arbre numéro 3

Question 3.1

We write the problem (ML) restricted to the three 1-trees given above.
(MLR)

$$
\min _{\lambda} 21 \lambda_{1}+18 \lambda_{2}+22 \lambda_{3}
$$

Subject to $\left\{\begin{array}{c}2 \lambda_{1}+2 \lambda_{2}+2 \lambda_{3}=2 \quad(v 2) \\ 2 \lambda_{1}+3 \lambda_{2}+1 \lambda_{3}=2 \quad(v 3) \\ 3 \lambda_{1}+1 \lambda_{2}+2 \lambda_{3}=2 \quad(v 4) \\ 1 \lambda_{1}+2 \lambda_{2}+3 \lambda_{3}=2 \quad(v 5) \\ \lambda_{1}+\lambda_{2}+\lambda_{3}=1 \quad(\text { convexity }) \\ \lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0\end{array}\right.$

Question 3.2

Here, we give the primal and dual solutions of the previous (MLR), and we want to find a new column if there is, to introduce in (MLR).

Primal solution $\lambda_{1}=\lambda_{2}=\lambda_{3}=\frac{1}{3}$ Primal objective $=20+1 / 3$
Dual solution $\mu_{2}=2, \mu_{3}=0, \mu_{4}=2+\frac{1}{3}, \mu_{5}=2-\frac{1}{3}, \eta=8+\frac{1}{3}$
Dual Objective $=12+8+1 / 3=20+1 / 3$
We can check the dual solution : reduced costs of $\lambda_{1}, \lambda_{2}, \lambda_{3}$ must be nonnegative.
For $\lambda_{1}: 21-2 \mu_{2}-2 \mu_{3}-3 \mu_{4}-\mu_{5}-\eta=21-4-0-6-1-2+1 / 3-8-1 / 3=21-21=0$
For $\lambda_{2}: 18-2 \mu_{2}-3 \mu_{3}-\mu_{4}-2 \mu_{5}-\eta=18-4-0-2-1 / 3-4+2 / 3-8-1 / 3=18-18=0$
For $\lambda_{3}: 22-2 \mu_{2}-\mu_{3}-2 \mu_{4}-3 \mu_{5}-\eta=22-4-0-4-2 / 3-6+1-8-1 / 3=22-22=0$
So, the primal and dual solutions are optimal.

Solving subproblem.
Data : costs and dual variables

μ	Vertex1	Vertex2 $=2$	Vertex3 $=0$	Vertex4=2+1/3	Vert.5=2-1/3
Vertex1	.	7	2	1	5
Vertex2 $=2$.	3	6	8
Vertxx3 $=0$.	4	2
Vertex4=2+1/3				.	9

Then reduced costs

μ	Vertex1	Vertex2 $=2$	Vertex3 $=0$	Vertex4=2+1/3	Vert.5=2-1/3
Vertex1	.	$7-2$	2	$1-2-1 / 3$	$5-2+1 / 3$
Vertex2 $=2$.	$3-2$	$6-2-2-1 / 3$	$8-2-2+1 / 3$
Vertex3 $=0$.	$4-2-1 / 3$	$2-2+1 / 3$
Vertex4=2+1/3				.	$9-2-1 / 3-2+1 / 3$

μ	Vertex1	Vertex2 $=2$	Vertex3 $=0$	Vertex4=2+1/3	Vert.5=2-1/3
Vertex1	.	5	2	$-1-1 / 3$	$3+1 / 3$
Vertex2 $=2$.	1	$2-1 / 3$	$4+1 / 3$
Vertex3 $=0$.	$2-1 / 3$	$1 / 3$
Vertex4=2+1/3				.	5

We compute a minimum spanning tree on vertices $2,3,4,5$
Edge $(3,5)$ reduced cost $1 / 3$,
Edge $(2,3)$ reduced cost 1
Edege $(2,4)$ reduced cost $2-1 / 3$
Then we add the two edges of minimum reduced costs starting from vertex 1
Edges $(1,4)$ reduced cost $-1-1 / 3$
Edge $(1,3)$ reduced cost 2 ,
Reduced cost of this 1-tree is : 4-1/3 plus -8-1/3 (for the convexity constraint) which is $-4-\frac{2}{3}<0$
The cost of this 1-tree is 14 . Degrees for vertices from 2 to 5 are $2,3,2,1$. We can check the reduced cost of this 1-tree as if this column were in (MLR) :
reduced cost is $14-2 \mu_{2}-3 \mu_{3}-2 \mu_{4}-1 \mu_{5}-\eta=14-4-0-4-\frac{2}{3}-2+\frac{1}{3}-8-\frac{1}{3}=4-\frac{1}{3}-$ $8-\frac{1}{3}=-4-\frac{2}{3}$. The result is correct.

A lower bound of $(M L)$ is the value of $(M L R)$ plus the reduced cost $=20+1 / 3-4-2 / 3=16-1 / 3$.

We denote by λ_{4} the variable of the new 1-tree and add this variable to (MLR)

Question 3.3

The new (MLR) is the following :
(MLR)

$$
\min _{\lambda} 21 \lambda_{1}+18 \lambda_{2}+22 \lambda_{3}+14 \lambda_{4}
$$

$$
\text { Subject to }\left\{\begin{array}{c}
2 \lambda_{1}+2 \lambda_{2}+2 \lambda_{3}+2 \lambda_{4}=2 \quad(v 2) \\
2 \lambda_{1}+3 \lambda_{2}+1 \lambda_{3}+3 \lambda_{4}=2 \quad(v 3) \\
3 \lambda_{1}+1 \lambda_{2}+2 \lambda_{3}+2 \lambda_{4}=2 \quad(v 4) \\
1 \lambda_{1}+2 \lambda_{2}+3 \lambda_{3}+1 \lambda_{4}=2 \quad(v 5) \\
\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}=1 \quad(\text { convexity }) \\
\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \geq 0
\end{array}\right.
$$

Here, we give the primal and dual solutions of this last (MLR), and we want to find a new column if there is, to introduce in (MLR).

Primal solution $\lambda_{1}=\lambda_{2}=0, \lambda_{3}=\lambda_{4}=\frac{1}{2}$; Primal objective $=18$
Dual solution $\mu_{2}=3, \mu_{3}=0, \mu_{4}=0, \mu_{5}=4, \eta=4 ;$ Dual objective=14+4=18
We can check the dual solution i.e. reduced costs of $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$ must be nonnegative.
For $\lambda_{1}: 21-2 \mu_{2}-2 \mu_{3}-3 \mu_{4}-\mu_{5}-\eta=21-6-0-0-4-4=21-14 \geq 0$
For $\lambda_{2}: 18-2 \mu_{2}-3 \mu_{3}-\mu_{4}-2 \mu_{5}-\eta=18-6-0-0-8-4=18-18=0$
For $\lambda_{3}: 22-2 \mu_{2}-\mu_{3}-2 \mu_{4}-3 \mu_{5}-\eta=22-6-0-0-12-4=22-22=0$
For $\lambda_{4}: 14-2 \mu_{2}-3 \mu_{3}-2 \mu_{4}-\mu_{5}-\eta=14-6-0-0-4-4=14-14=0$
So, the primal and dual solutions are optimal.

Solving the subproblem
Data : costs and dual variables

μ	Vertex1	Vertex2 $=3$	Vertex3 $=0$	Vertex4 $=0$	Vertex5 $=4$
Vertex1	.	7	2	1	5
Vertex2 $=3$.	3	6	8
Vertxx3 $=0$.	4	2
Vertex4 $=0$.	9

Reduced costs

μ	Vertex1	Vertex2 $=3$	Vertex3 $=0$	Vertex4 $=0$	Vertex5 $=4$
Vertex1	.	$7-3$	2	1	$5-4$
Vertex2 $=3$.	$3-3$	$6-3$	$8-3-4$
Vertxx3 $=0$.	4	$2-4$
Vertex4 $=0$.	$9-4$

μ	Vertex1	Vertex2 $=3$	Vertex3 $=0$	Vertex4 $=0$	Vertex5 $=4$
Vertex1	.	4	2	1	1
Vertex2 $=3$.	0	3	1
Vertxx3 $=0$.	4	-2
Vertex4 $=0$.	5

We compute a minimum spanning tree on vertices $2,3,4,5$
Edge $(3,5)$ reduded cost= -2
Edge $(2,3)$ reduced cost=0
\rightarrow Edge $(2,5)$ reduced cost=1, is not introduced because it makes a cycle
Edge $(2,4)$ reduced cost=3
Then we add the two edges of minimum reduced costs starting from vertex 1
Edge $(1,4)$ reduced cost=1
Edge (1,5) reduced cost=1
The reduced cost of this 1-tree is : 3 plus -4 (for the convexity constraint) . The total is -1
We note that this 1-tree is a cycle because the degree of each vertex is equal to 2 . The cost of this 1tree is 17.

A lower bound of (ML) is the value of (MLR) plus the reduced cost = 18-1 =17.
So, the cycle is reaching this lower bound, so it is optimal. We can stop the algorithm.

