Short Course on Column Generation - Part I Example Simplex Method

Ana Flávia U. S. Macambira
ana.macambira@academico.ufpb.br

Alain Faye
alain.faye@ensiie.fr

Departamento de Estatística
Universidade Federal da Paraíba
École nationale supérieure d'informatique pour l'industrie et l'entreprise

March 8th, 2024

Simplex Method - Example

Consider the problem below written in standard form:

$$
\begin{aligned}
& \text { Maximize } z=5 x_{1}+2 x_{2} \\
& \text { Subject to: } x_{1}+x_{2}+x_{3}=4 \\
& x_{1}+x_{4}=3 \\
& x_{2}+x_{5}=2 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0
\end{aligned}
$$

We have matrix A :

$$
A=\left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

which is the matrix of the coefficients of the constraints, $A \in \mathbb{R}^{3 \times 5}$ and its columns are:

$$
a_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), a_{2}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), a_{3}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), a_{4}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), a_{5}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) ;
$$

Simplex Method - Example

$$
\begin{array}{r}
\text { Maximize } z=5 x_{\mathbf{1}}+2 x_{\mathbf{2}} \\
\text { Subject to: } x_{\mathbf{1}}+x_{\mathbf{2}}+x_{\mathbf{3}}=4 \\
x_{\mathbf{1}}+x_{\mathbf{4}}=3 \\
x_{\mathbf{2}}+x_{\mathbf{5}}=2 \\
x_{\mathbf{1}}, x_{\mathbf{2}}, x_{\mathbf{3}}, x_{\mathbf{4}}, x_{\mathbf{5}} \geq 0
\end{array}
$$

$$
b=\left(\begin{array}{l}
4 \\
3 \\
2
\end{array}\right) \text { is the right side of the constraints, } b \in \mathbb{R}^{\mathbf{3} \times \mathbf{1}}
$$

$c=\left(\begin{array}{l}5 \\ 2 \\ 0 \\ 0 \\ 0\end{array}\right)$ is the matrix of the coefficients of the objective function, $c \in \mathbb{R}^{\mathbf{5} \times \mathbf{1}}$

$$
x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{\mathbf{4}} \\
x_{5}
\end{array}\right) \text { is the matrix of the variables, } x \in \mathbb{R}^{\mathbf{5 \times 1}}
$$

Simplex Method - Example

We split matrix A in $A=(B \mid N)$. We will consider

$$
\begin{gathered}
B=\left[\begin{array}{lll}
a_{3} & a_{4} & a_{5}
\end{array}\right]=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), B \in \mathbb{R}^{3 \times 3} \text { and } N=\left[\begin{array}{ll}
a_{1} & a_{2}
\end{array}\right]=\left(\begin{array}{ll}
1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right), N \in \mathbb{R}^{3 \times 2} . \\
x_{B}=\left(\begin{array}{l}
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right), x_{N}=\binom{x_{1}}{x_{2}} \\
c_{B}=\left(\begin{array}{l}
c_{3} \\
c_{4} \\
c_{5}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), c_{N}=\binom{c_{1}}{c_{2}}=\binom{5}{2}
\end{gathered}
$$

Simplex Method - Example

$$
\begin{gathered}
B x_{b}+N x_{N}=b \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)+\left(\begin{array}{ll}
1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{l}
4 \\
3 \\
2
\end{array}\right)
\end{gathered}
$$

As B is the identity matrix, its inverse $B^{-1}=B$ and making $x_{N}=0$, we have

$$
\begin{aligned}
x_{B}= & B^{-1} b-B^{-1} N x_{N} \rightarrow \text { making } x_{N}=0 \rightarrow \bar{x}_{B}=B^{-1} b \\
& \left(\begin{array}{l}
\bar{x}_{3} \\
\bar{x}_{4} \\
\bar{x}_{5}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
4 \\
3 \\
2
\end{array}\right)=\left(\begin{array}{l}
4 \\
3 \\
2
\end{array}\right)
\end{aligned}
$$

And the current value of the objective function is:

$$
\bar{z}=c_{B}^{t} \bar{x}_{B}=\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
4 \\
3 \\
2
\end{array}\right)=0
$$

Simplex Method - Example

Once we found a basic feasible solution, we need to know if the current solution is optimal, and to answer this question we need to check if at least one non basic variable gives a positive gain to the objective function.

$$
\begin{gathered}
z=c_{B} x_{B}+c_{N} x_{N} \\
z=c_{B}\left(B^{-1} b-B^{-1} N x_{N}\right)+c_{N} x_{N} \\
z=c_{B} B^{-1} b-c_{B} B^{-1} N x_{N}+c_{N} x_{N} \\
z=\underbrace{c_{B} B^{-1} b}_{\bar{z}}+\underbrace{\left(c_{N}-c_{B} B^{-1} N\right)}_{\text {gain }} x_{N}
\end{gathered}
$$

where \bar{z} is the value of the current solution.

Simplex Method - Example

Now we have to see if there is at least one variable to enter the basis, so we have to calculate $c_{1}-z_{1}$ and $c_{2}-z_{2}$ to see if at least one non basic variable are going to improve the value of the objective function, which we are calling gain.

$$
\begin{aligned}
& c_{1}-z_{1}=c_{1}-c_{B}^{\top} B^{-1} a_{1}=5-\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=5 \\
& c_{2}-z_{2}=c_{2}-c_{B}^{\top} B^{-1} a_{2}=2-\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=2
\end{aligned}
$$

As the two non basic variables are providing some gain, we are going to choose x_{1} to enter the basis because it's the biggest value.

Simplex Method - Example

- Now we know that variable x_{1} is going to enter the basis;
- The question is: which variable will leave the basis?
- We have to check which variable can assume the biggest value considering that the basic variables cannot assume values less than zero.
- $x_{B}=\bar{x}_{B}-B^{-1} N x_{N}$. As x_{1} is going to enter the basis, $x_{B}=\bar{x}_{B}-B^{-1} a_{1} x_{1}$

Simplex Method - Example

$$
\begin{gathered}
x_{B}=\bar{x}_{B}-B^{-1} a_{1} x_{1} \\
\left(\begin{array}{l}
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{l}
4 \\
3 \\
2
\end{array}\right)-\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) x_{1} \\
\left\{\begin{array}{l}
x_{3}=4-x_{1} \\
x_{4}=3-x_{1} \\
x_{5}=2
\end{array}\right.
\end{gathered}
$$

- As all the variables in the model need to have values greater or equal zero, x_{3}, x_{4}, x_{5} need to be greater or equal zero;
- We are going to analyse to which value x_{1} can increase its value respecting this condition;
- Analysing the first equation, $x_{3} \geq 0$ so, we need $4-x_{1} \geq 0$, leading to $x_{1} \leq 4$;
- In the second equation, $x_{4} \geq 0 \rightarrow 3-x_{1} \geq 0 \rightarrow x_{1} \leq 3$;
- In the third equation $x_{5} \geq 0 \rightarrow 2 \geq 0$ in this case, the value of x_{5} doesn't depend of the value of x_{1};
- Hence, the variable that most limits the value of x_{1} is x_{4}, so it leaves the basis.

Simplex Method - Example

Remembering the problem

$$
\begin{array}{r}
\text { Maximize } z=5 x_{1}+2 x_{2} \\
\text { Subject to: } x_{1}+x_{2}+x_{3}=4 \\
x_{1}+x_{4}=3 \\
x_{2}+x_{5}=2 \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0
\end{array}
$$

The first basis was

$$
B=\left(a_{3} a_{4} a_{5}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Now, variable x_{1} entered the basis and variable x_{4} has just left the basis, so our current basis is:

$$
B=\left(a_{3} a_{1} a_{5}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \rightarrow B^{-1}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Simplex Method - Example

Now we are going to calculate the new basic feasible solution.

$$
\bar{x}_{B}=B^{-1} b \Rightarrow\left(\begin{array}{c}
\bar{x}_{3} \\
\bar{x}_{1} \\
\bar{x}_{5}
\end{array}\right)=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
4 \\
3 \\
2
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)
$$

The value of the objective function is:

$$
\bar{z}=c_{B} \bar{x}_{B}=\left(\begin{array}{lll}
0 & 5 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)=15
$$

The next step is to check if this solution is optimal by calculating the gain of the non-basic variables.

Simplex Method - Example

$$
\begin{aligned}
& c_{2}-z_{2}=c_{2}-c_{B}^{\top} B^{-1} a_{2}=2-\left(\begin{array}{lll}
0 & 5 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=2 \\
& c_{4}-z_{4}=c_{4}-c_{B}^{\top} B^{-1} a_{4}=0-\left(\begin{array}{lll}
0 & 5 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=-5
\end{aligned}
$$

The variable x_{2} is the only one that provides a gain to the objective function, so x_{2} enters the basis.

Simplex Method - Example

At the previous iteration, we decided which variable was going to leave the basis in an intuitive way. The mathematical criteria for the variable to leave the basis is:

$$
\begin{gathered}
x_{B_{r}}=\min \left\{\frac{\bar{x}_{r}}{y_{r k}}, r=1,2, \ldots, m, y_{r k}>0\right\} \\
y_{k}=B^{-1} a_{k}
\end{gathered}
$$

At this iteration our a_{k} is a_{2}, then:

$$
B^{-1} a_{k}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

$x_{B_{r}}=\min \left\{\frac{1}{1}, \frac{2}{1}\right\}=1$, which is related to variable x_{3}. The variable x_{2} entered the basis and the variable x_{3} has just left the basis, so our current basis is:

$$
B=\left(a_{2} a_{1} a_{5}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \rightarrow B^{-1}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right)
$$

Simplex Method - Example

Now we are going to calculate the new basic feasible solution.

$$
\bar{x}_{B}=B^{-1} b \Rightarrow\left(\begin{array}{c}
\bar{x}_{2} \\
\bar{x}_{1} \\
\bar{x}_{5}
\end{array}\right)=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
4 \\
3 \\
2
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
1
\end{array}\right)
$$

The value of the objective function is::

$$
\bar{z}=c_{B} \bar{x}_{B}=\left(\begin{array}{lll}
2 & 5 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
3 \\
1
\end{array}\right)=17
$$

The next step is to check if this solution is optimal by calculating the gain of the non-basic variables.

Simplex Method - Example

$$
\begin{gathered}
c_{3}-z_{3}=c_{3}-c_{B} B^{-1} a_{3}=0-\left(\begin{array}{lll}
2 & 5 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
=\left(\begin{array}{lll}
2 & 3 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=-2 \\
c_{4}-z_{4}=c_{4}-c_{B} B^{-1} a_{4}=0-\left(\begin{array}{lll}
2 & 5 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
=\left(\begin{array}{lll}
2 & 3 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=-3 .
\end{gathered}
$$

As neither of the non basic variables provides a positive gain for the objective function, the current solution is optimal.

