Contrôle PM (MPRO 2012) - Partie 2.

Inégalité de couverture et lifting.

Soit N un ensemble d'objets. Pour i appartenant à N soient a_i un entier>0 représentant le poids de l'objet i. Soit b un entier t.q. $a_i \le b$ pour tout i appartenant à N . b représente la capacité du sac-à-dos.

La contrainte de sac-à-dos modélise le fait que le sac-à-dos ne peut supporter un poids total des objets supérieur à *b*.

Elle s'écrit
$$\sum_{i \in N} a_i x_i \le b$$
 (sac $-a$ dos) avec $x_i = \begin{cases} 1 & \text{silobjet } i \text{ est choisi} \\ 0 & \text{sinon} \end{cases}$

On note S l'ensemble des vecteurs booléens (indexés par les objets de N) et satisfaisant la contrainte de sac-à-dos. On note P=ConvS l'enveloppe convexe de S.

Soit C inclus dans N une couverture c'est-à-dire C tel que $\sum_{i \in C} a_i > b$.

L'inégalité $\sum_{i \in C} x_i \le |C| - 1$ est valide pour S (et donc P) puisqu'un vecteur t.q. $x_i = 1 \ \forall i \in C$ n'est pas dans S. Cette inégalité est appelée inégalité de couverture.

On suppose que C est une couverture minimale c'est-à-dire C est une couverture et C- $\{i\}$ ne l'est pas pour tout i de C. On note $a_{i_{\max}} = \max_{i \in C} \{a_i\}$. C couverture minimale implique $\sum_{i \in C} a_i - a_{i_{\max}} \le b$.

Sous la condition $a_i \le b$ la dimension de P est pleine c'est-à-dire égale au nombre d'objets de N.

On rajoute une variable $x_0 \in \{0,1\}$ affectée d'un poids a_0 pas forcément positif. On considère S' l'ensemble des vecteur booléens (x_0,x) indexés par $\{0\} \cup \mathbb{N}$ et vérifiant $a_0x_0 + \sum_{i \in \mathbb{N}} a_ix_i \leq b$.

On considère l'inégalité
$$\alpha x_0 + \sum_{i \in C} x_i \leq \left| C \right| - 1$$

- 1) On se pose la question de savoir pour quelles valeurs de α l'inégalité est valide pour S'.
- a) Pour $a_0 \le b \sum_{i \in C} a_i$

Quelle la valeur maximale de α telle que l'inégalité est valide ?

b) Pour
$$b - \sum_{i \in C} a_i < a_0 \le b - \sum_{i \in C} a_i + a_{i_{\max}}$$

Quelle la valeur maximale de α telle que l'inégalité est valide ?

c) Pour
$$b - \sum_{i \in C} a_i + a_{i_{\text{max}}} < a_0 \le b$$

Quelle est la valeur maximale de α telle que l'inégalité est valide ? Ici la valeur maximum de α dépend de l'instance du problème. On exprimera α à l'aide d'un programme mathématique en variables 0-1.

2) On suppose que l'inégalité $\sum_{i \in C} x_i \le |C| - 1$ induit une facette de P = ConvS.

Montrer que l'inégalité (avec α maximum) induit une facette de P'=ConvS'dans tous les cas de la question 1.

3) On considère ici un ensemble $N=\{1,2,3,4,5\}$ de 5 objets et l'ensemble S des vecteurs booléens satisfaisant la contrainte de sac-à-dos : $3x_1+2x_2+2x_3+x_4+x_5 \le 7$

Soit $C=\{1,2,3,4\}$ une couverture et l'inégalité de couverture $x_1+x_2+x_3+x_4\leq 3$. On rajoute la variable x_0 de poids $a_0=3$. Donner l'inégalité $\alpha x_0+x_1+x_2+x_3+x_4\leq 3$ valide pour S avec α maximum.

1

Barême: 2 points par question, total=10.

Correction

Question 1.

Cas a.
$$a_0 \le b - \sum_{i \in C} a_i \iff \sum_{i \in C} a_i \le b - a_0$$

Dans ce cas C n'est plus une couverture quand x_0 =1 et tous les élément de C peuvent être mis dans le sac. On obtient en reportant dans l'inégalité :

$$\alpha + |C| \le |C| - 1 \Leftrightarrow \alpha \le -1$$

D'où α_{max} =-1.

Cas b.

$$b - \sum_{i \in C} a_i < a_0 \le b - \sum_{i \in C} a_i + a_{i_{\max}} \iff \sum_{i \in C} a_i > b - a_0 \ge \sum_{i \in C} a_i - a_{i_{\max}}$$

Dans ce cas C est une couverture quand x_0 =1 et tous les élément de C sauf le plus lourd peuvent être mis dans le sac. On obtient en reportant dans l'inégalité :

$$\alpha + |C| - 1 \le |C| - 1 \Leftrightarrow \alpha \le 0$$

D'où $\alpha_{max}=0$.

Cas c.

$$b - \sum\nolimits_{i \in C} {{a_i} + {a_{{i_{\max }}}} < {a_0} \le b \Longleftrightarrow \sum\nolimits_{i \in C} {{a_i} - {a_{{i_{\max }}}} > b - {a_0} \ge 0}$$

Déjà on peut avoir x_0 =1 et dans ce cas C est toujours une couverture mais on ne peut pas mettre |C|-1 éléments de C dans le sac. Le nombre maximum d'éléments de C que l'on peut mettre dans le sac, est donné par la valeur du problème suivant :

$$\max \sum_{i \in C} x_i \quad s.c. \quad \sum_{i \in N} a_i x_i \le b - a_0, x_i \in \{0,1\} i \in N$$

En reportant dans l'inégalité et en notant v la valeur de ce max, on obtient :

$$\alpha + \nu \le |C| - 1 \Leftrightarrow \alpha \le |C| - 1 - \nu$$

D'où $\alpha_{\text{max}} = |C| - 1 - v$.

Question 2.

On a vu que dans chacun des cas précédents, il existe un vecteur (1,x) de S'tel que l'inégalité construite avec α_{\max} est saturé par (1,x). Par exemple dans le cas c, x est la solution du programme en 0-1. En considérant les |N| points affinement indépendants $x^p \in S$ et tel que $\sum_{i \in C} x_i = |C| - 1$

on construit une famille (1,x), (0,x^p) (p=1,...,|N|) de |N|+1 points affinement indépendants de S'tels que $\alpha_{\max} x_0 + \sum_{i \in C} x_i = |C| - 1$

Comme P'=ConvS'est construit avec |N|+1 variables, l'inégalité avec $\alpha=\alpha_{max}$ induit une facette de P'.

Question 3

Ici on est dans le cas c. On résout le programme en 0-1 et on trouve v=2 avec pour solution $x_4=1$, $x_3=1$ ou $x_2=1$, le reste nul (sauf $x_0=1$). Ce qui donne $\alpha_{max}=1$.

Problème de localisation d'entrepôts et coupes de Benders.

Soient m entrepôts et n clients. On veut raccorder chaque client à un entrepôt et on doit décider quels entrepôts ouvrir pour cela. Le coût d'ouverture d'un entrepôt i est $d_i > 0$, le coût de raccordement du client j à l'entrepôt i est $C_{ij} > 0$. Le problème se modélise par le programme en variables mixtes suivant :

$$\max \sum_{i=1,...m} (-d)_{i} y_{i} + \sum_{i=1,...m} \sum_{j=1,...n} (-C_{ij}) x_{ij}$$

$$\sum_{i=1,...m} y_{i} \ge 1$$

$$-\sum_{i=1,...m} x_{ij} \le -1 \quad \forall j = 1,...,n \quad (1)$$
s.c.
$$\sum_{j=1,...n} x_{ij} \le n y_{i} \quad \forall i = 1,...,m \quad (2)$$

$$x_{ij} \ge 0, y_{i} \in \{0,1\} \quad \forall i, j$$

Pour un client j, x_{ij} est la proportion de marchandise venant de l'entrepôt i. Un client j s'approvisionne à l'entrepôt de coût C_{ij} le plus bas et x_{ij} vaut 0 ou 1 (1 si le client j s'approvisionne en i).

La contrainte (1) signifie qu'un client j est raccordé à un entrepôt. La contrainte (2) signifie qu'un client ne peut être raccordé à un entrepôt i que si celui-ci est ouvert (y_i =1). Noter qu'un entrepôt ouvert peut recevoir les n clients.

Question 1.

On considère un vecteur ÿ fixé, booléen et avec au moins une coordonnée valant 1 (au moins un entrepôt ouvert).

- -Ecrire le sous-problème en les variables x (avec \ddot{y} fixé).
- -Ecrire le dual du sous-problème. On notera $\lambda_j \ge 0$ les variables duales associées aux contraintes (1) et $\pi_i \ge 0$ les variables duales associées aux contraintes (2).
- -Donner la solution du dual. Il peut y avoir plusieurs solutions du dual. On choisira la solution naturelle (la plus simple) celle qui minimise chaque λ_j i.e. maximise chaque $-\lambda_j$.

Question 2.

On considère le problème suivant avec 2 clients et 3 entrepôts.

Coût raccordement client-entrepôt	Entrepôt 1	Entrepôt 2	Entrepôt 3
Client 1	1	2	3
Client 2	5	3	1

Coût d'ouverture des entrepô	ts 1	2	3

a) A partir des formules de la question 1 donnant la solution du dual du sous-problème, pour le point :

$$\ddot{y}_2 = 1, \ddot{y}_1 = \ddot{y}_3 = 0$$

on trouve la coupe de Benders :

$$\eta \le -5 + 2y_1 + 4y_3$$

Donner les coupes de Benders pour :

$$\ddot{y}_1 = 1, \ddot{y}_2 = \ddot{y}_3 = 0$$

$$\ddot{y}_1 = \ddot{y}_2 = 1, \ddot{y}_3 = 0$$

b) Résoudre le problème par l'algorithme des coupes de Benders avec pour problème maitre initial le problème dans lequel on aura introduit les trois coupes de Benders calculées ci-dessus.

Le problème maître sera résolu par énumération sur les variables y. Si le problème maître admet deux solutions, on choisira celle avec un minimum de variables y valant 1. L'algorithme se termine après deux itérations (deux ajouts de coupes).

<u>Barême</u>. Question1: 1 point (sous-problème), 2 points (dual), 3 points (solution du dual). Question2: a) 2 points, b) 2 points. Total=10.

Correction

Question 1.

On fixe $y=\ddot{y}$ dans le problème, on obtient le sous-problème :

$$\max \sum_{i=1,\dots,m} \sum_{j=1,\dots,n} \left(-C_{ij}\right) x_{ij}$$

$$\sum_{i=1,\dots,m} x_{ij} \le -1 \quad \forall j = 1,\dots,n \quad (1)$$

$$\sum_{j=1,\dots,n} x_{ij} \le n \ddot{y}_{i} \quad \forall i = 1,\dots,m \quad (2)$$

$$x_{ij} \ge 0 \quad \forall i,j$$

On remarque ici que le sous-problème ne se décompose pas par client car la contrainte (2) lie les clients entre eux. La solution est simple. Chaque client j est raccordé à l'entrepôt i ouvert de coût C_{ij} minimum ou $-C_{ij}$ maximum.

Le dual est:

$$\begin{split} \min & -\sum\nolimits_{j=1,...n} \lambda_j + n \sum\nolimits_{i=1,...m} \ddot{\mathbf{y}}_i \boldsymbol{\pi}_i \\ & \left\{ -\lambda_j + \boldsymbol{\pi}_i \geq -C_{ij} \quad \forall j=1,...,n; i=1,...,m \right. \\ \text{s.c.} & \left\{ \lambda_j \geq 0, \boldsymbol{\pi}_i \geq 0 \quad \forall i,j \right. \end{split}$$

Il peut y avoir plusieurs solutions du dual. La plus simple est sans doute celle-ci :

$$\begin{cases} -\lambda_{j} = \max_{i \text{ tel que } \ddot{y}_{i}=1} \left\{ -C_{ij} \right\} \\ \pi_{i} = \max_{j} \left(-C_{ij} + \lambda_{j} \right)^{+} \\ \text{avec } (a)^{+} = \max(0, a) \end{cases}$$

Les C_{ij} étant positifs les variables λ_j sont aussi positives. De plus le vecteur \ddot{y} ayant au moins une coordonnée à 1, le max a bien un sens. On remarque que π_i =0 pour chaque i tel que \ddot{y}_i =1 car :

$$\pi_{i} = \max_{j} \left(-C_{ij} + \lambda_{j} \right)^{+} = \max_{j} \left(-C_{ij} - \max_{i \text{ tel que } \ddot{y}_{i} = 1} \left\{ -C_{ij} \right\} \right)^{+} = \max_{j} 0$$

La solution est bien optimale car la valeur du dual est la somme des $-\lambda_j$ et chaque λ_j représente le coût de raccordement minimal pour le client j. On retrouve bien la valeur du primal .

Question 2.

a) On applique les formules précédentes sur les données.

Pour :

$$\ddot{y}_1 = 1, \ddot{y}_2 = \ddot{y}_3 = 0$$

On obtient:

$$-\lambda_1 = -1, -\lambda_2 = -5,$$

 π_1 =0 comme on l'a vu plus haut car l'entrepôt 1 est ouvert

$$\pi_2 = \max\{(-2+1)^+, (-3+5)^+\} = \max\{0,2\} = 2$$

$$\pi_3 = \max\{(-3+1)^+, (-1+5)^+\} = \max\{0,4\} = 4$$

La valeur du dual du sous-problème est donc $-6+4\ddot{y}_2+8\ddot{y}_3$ (sachant que n=2). Ce qui se traduit par la coupe de Benders :

$$\eta \le -6 + 4y_2 + 8y_3$$

que l'on ajoutera dans le problème maître.

Pour:

$$\ddot{y}_1 = \ddot{y}_2 = 1, \ddot{y}_3 = 0$$

On trouve:
 $\eta \le -4 + 4y_3$

b) Résolution du problème par l'algorithme des coupes de Benders. Le problème maître initial est :

$$\max - y_1 - 2y_2 - 3y_3 + \eta$$

$$\sum_{i=1,\dots,3} y_i \ge 1$$

$$\eta \le -5 + 2y_1 + 4y_3$$

$$\eta \le -6 + 4y_2 + 8y_3$$

$$\eta \le -4 + 4y_3$$

$$y_i \in \{0,1\} \quad \forall i = 1,2,3$$

Pour le résoudre, on énumère sur les valeurs possibles de y. Il y en a 7 le vecteur nul étant exclus. A chaque fois le η maximum est déterminé par l'inégalité de membre droit le plus bas.

On trouve deux solutions optimales. L'une pour $y_3=1$ et le reste nul et l'autre pour $y_1=y_3=1$ et le reste nul, et qui donnent pour valeur du problème maître -4 avec $\eta=-1$ pour la première solution. On résout le sous-problème pour $\ddot{y}_3=1$ et $\ddot{y}_1=\ddot{y}_2=0$. La valeur du sous-problème est -4. On trouve la coupe de Benders :

$$\eta \le -4 + 4y_1 + 2y_2$$

Comme η =-1>-4, on rajoute cette coupe au problème maître.

On résout à nouveau le problème maître. On trouve comme solution optimale $y_1=y_3=1$ et le reste nul. Qui donne pour valeur du problème maître -4 avec $\eta=0$. On résout le sous-problème pour $\ddot{y}_1=\ddot{y}_3=1$ et $\ddot{y}_2=0$. La valeur du sous-problème est -2. On trouve la coupe de Benders :

$$\eta \leq -2$$

Comme $\eta=0>-2$, on rajoute cette coupe au problème maître.

On résout à nouveau le problème maître. On trouve comme solution optimale $y_1=y_3=1$ et le reste nul. Qui donne pour valeur du problème maître -6 avec η =-2. On vient de résoudre le sous-problème pour ce vecteur et on avait trouvé -2. Comme η <-2 on s'arrête.

La solution optimale consiste donc à ouvrir les entrepôts 1 et 3. Elle est de coût -6 dont -2 pour les raccordements des clients.