Total=12pts sur 10

Exercice 1. Décomposition de Dantzig-Wolfe (2pts)

On considère le problème type suivant :

(P) $\min_{x} cx$

Sous contraintes
$$\begin{cases} Ax \ge a \\ x = {x_1^1 \choose x^2} \in X^1 \times X^2 \end{cases}$$

Où
$$X^i \subset Z^{m_i}$$
 $i = 1,2$

 x^i est un vecteur (colonne) de nombres entiers de m_i lignes (coordonnées) et X^i contient un nombre fini n_i de points, ceci pour i=1,2. La matrice A se décompose en A=(A¹ A²) avec un nombre de colonnes $m_1 + m_2$ de sorte que Ax=A¹x¹+A²x². De même pour le vecteur c=(c¹ c²).

On propose 2 façons d'écrire le problème (P) en extension.

F1 : on écrit
$$x=\sum_{i=1}^{n_1n_2}\lambda_i\chi_i$$
 avec $\chi_i\in X^1\times X^2$ et $\lambda_i\in\{0,1\},\ \sum_{i=1}^{n_1n_2}\lambda_i=1$

Ceci induit le problème (PF1) dont les variables sont les variables λ_i , $i=1,\ldots,n_1n_2$

$$\begin{aligned} \text{F2: on \'ecrit } x &= \binom{x^1}{x^2} = \binom{\sum_{i=1}^{n_1} \lambda_i^1 \chi_i^1}{\sum_{i=1}^{n_2} \lambda_i^2 \chi_i^2} \\ \text{avec } \chi_i^1 \in X^1, \ \chi_i^2 \in X^2 \text{ et } \lambda_i^1 \in \{0,1\}, \sum_{i=1}^{n_1} \lambda_i^1 = 1, \lambda_i^2 \in \{0,1\}, \\ \sum_{i=1}^{n_2} \lambda_i^2 &= 1 \end{aligned}$$

Ceci induit le problème (PF2) dont les variables sont les variables λ_i^1 $i=1,\ldots,n_1$ et λ_i^2 $i=1,\ldots,n_2$

Ensuite on considère les relaxations continues des 2 problèmes :

(PLF1) où chaque $\lambda_i \in \{0,1\}$ est relâchée en $\lambda_i \geq 0$

(PLF2) où chaque
$$\lambda_i^1 \in \{0,1\}$$
 est relâchée en $\lambda_i^1 \ge 0$ et $\lambda_i^2 \in \{0,1\}$ est relâchée en $\lambda_i^2 \ge 0$

1° Montrer que les valeurs des deux problèmes (PLF1) et (PLF2) sont égales.

Indication: Conv(X×Y)=ConvX×ConvY où Conv désigne l'enveloppe convexe c'est-à-dire l'ensemble des combinaisons convexes de points de l'ensemble spécifié.

Exercice 2. Décomposition de Benders (5pts)

Soit le graphe suivant :

G=(V,E) avec $V=\{1,2,3,4\}$ et l'ensemble des arcs $E=\{(1,2),(1,3),(2,4),(2,3),(3,2),(3,4)\}$.

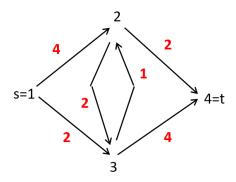
Chaque e∈E est valué par une valeur c_e>0 indiquée sur le dessin ci-dessous.

A chaque e est alloué une deuxième valeur de >0 donnée dans le tableau suivant :

е	(1,2)	(1,3)	(2,4)	(2,3)	(3,2)	(3,4)
$d_{\rm e}$	1	5	5	4	3	1

 d_e peut être interprété comme un surcoût qui viendrait s'ajouter à la valeur c_e de l'arc e. Conférer le problème (Pb) ci-dessous et la suite.

On note s=1 et t=4.



On considère le problème (Pb) suivant :

$$\max_{x,y} y_t - y_s$$

Sous contraintes
$$\begin{cases} y_j - y_i \leq c_e + d_e x_e & \forall e = (i,j) \in E \\ \sum_{e \in E} x_e \leq 2 \\ x_e \in \{0,1\} & \forall e \in E, \quad y_i \in R \ \forall i \in V \end{cases}$$

Pour x fixé, on considère le sous-problème SP(x) :

$$\max_{v} y_t - y_s$$

Sous contraintes
$$\begin{cases} y_j - y_i \leq c_e + d_e x_e & \forall e = (i,j) \in E \\ y_i \in R \ \forall i \in V \end{cases}$$

Notons que dans ce sous-problème les variables y n'ont pas de contrainte de signe.

1° Ecrire DSP(x) le problème dual de SP(x). On pourra vérifier que DSP(x) est un problème de plus court chemin de s à t. Attention : les variables y sans signe engendrent des contraintes d'égalité dans le dual.

2

On résout (Pb) par la méthode de décomposition de Benders. A une itération donnée, on a déjà généré 2 coupes de Benders et on a le problème maître suivant :

 $\max_{x,t} t$

Sous contraintes
$$\begin{cases} t \leq 6 + x_{12} + 5x_{24} \\ t \leq 6 + 5x_{13} + x_{34} \\ \sum_{e \in E} x_e \leq 2 \\ x_e \in \{0,1\} \ \forall e \in E \end{cases}$$

La solution optimale est $x_{13}=x_{24}=1$ (et les autres x nuls) et t=11.

2° Résoudre DSP(x) pour la solution x optimale précédente du problème maître. Donner la coupe de Benders induite que l'on doit ajouter au problème maître. Et donner l'encadrement de la valeur de (Pb).

Exercice3. Méthodes polyédriques. (5pts)

On considère le *quadric polytope* QP₃ défini comme l'enveloppe convexe des points 0-1 et de 6 coordonnées définis de la façon suivante :

- les 3 premières coordonnées x₁, x₂, x₃ prennent leurs valeurs librement dans l'ensemble {0,1}
- les 3 suivantes y_{12} , y_{13} , y_{23} prennent les valeurs respectivement des produits x_1x_2 , x_1x_3 , x_2x_3 .

Il y a au total 2³=8 points de ce type. Par exemple, voici quelques points : $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$

Les inégalités suivantes sont valides pour QP3:

- y_{ij}≥0 pour ij=12, 13, 23
- $1 x_i x_j + y_{ij} \ge 0$ pour ij=12, 13, 23 car quand $x_i = x_j = 1$ alors $y_{ij} \ge 1$ est bien valide et pour le reste on a $y_{ij} \ge 0$ ou -1 ce qui est vrai aussi.
- 1° Montrer que $1-x_1-x_2-x_3+y_{12}+y_{13}+y_{23}\geq 0$ est une coupe de Chvatal qui se déduit à partir des 6 inégalités précédentes.
- 2° Montrer que cette inégalité induit une facette de QP₃.

Correction

Décomposition de Dantzig-Wolfe

(PLF1) est le problème :
$$\min cx$$
 s.c.
$$\begin{cases} Ax \geq a \\ x \in Conv(X^1 \times X^2) \end{cases}$$
 (PLF2) est le problème : $\min cx$ s.c.
$$\begin{cases} Ax \geq a \\ x \in ConvX^1 \times ConvX^2 \end{cases}$$

(PLF2) est le problème :
$$\min cx$$
 s.c. $\begin{cases} Ax \ge a \\ x \in ConvX^1 \times ConvX^2 \end{cases}$

Dans les deux problèmes x parcourt exactement les mêmes points si on se réfère à l'indication.

On peut par ailleurs démontrer l'indication en 2 temps de la façon suivante :

 $X\times Y\subset ConvX\times ConvY\Rightarrow Conv(X\times Y)\subset ConvX\times ConvY$ car $ConvX\times ConvY$ est un ensemble convexe et $ConvX\times ConvY$ désigne le plus petit convexe contenant l'ensemble spécifié.

 $(ConvX)\times Y \subset Conv(X\times Y)$ et $X\times (ConvY) \subset Conv(X\times Y)$. Donc $((ConvX)\times Y) \cup (X\times (ConvY)) \subset Conv(X\times Y)$. Soit $((ConvX) \cup X) \times (Y \cup (ConvY)) \subset Conv(X \times Y)$. Comme X est inclus dans ConvX et de même pour Y, on obtient (ConvX) \times (ConvY) \subset Conv(X \times Y)

Décomposition de Benders.

1° DSP(x)

On note u_{ii}≥0, les variables duales qui sont indexées par les arcs de G.

$$\min \sum_{e \in E} u_e (c_e + d_e x_e)$$

$$\text{Sous contraintes} \begin{cases} \sum_{j \in I^-(i)} u_{ji} - \sum_{j \in I^+(i)} u_{ij} = \begin{cases} 0 & i \neq s, t \\ 1 & i = t \\ -1 & i = s \end{cases} \\ u_{ij} \geq 0 & \forall (i,j) \in E \end{cases}$$

Où $\Gamma^+(i)$ sont les successeurs du sommet i et $\Gamma^-(i)$ les prédécesseurs.

On peut voir ce problème comme un flot de valeur 1 s'écoulant de s à t et dont il faut trouver le chemin de coût minimum avec les arcs e munis des poids $c_e + d_e x_e$.

2° On a à résoudre un problème de plus court chemin de s à t avec les arcs (2,4) et (1,3) munis de leur poids ce et de leur poids additionnels de soit 2+5=7 pour l'arc (1,3) et 2+5=7 pour l'arc (2,4).

Le plus court chemin est 1-2-3-4 de valeur 10. Les variables duales correspondantes sont donc $u_{12}=u_{23}=u_{34}=1$ (les autres sont nulles). Ce qui donne la coupe : $t \le 10 + x_{12} + 4x_{23} + x_{34}$.

Donc une borne inférieure de (Pb) est 10 (valeur du sous-problème) et une borne supérieure est 11 (valeur du problème maître).

4

Méthodes polyédriques.

1° On additionne les 6 inégalités valides et on obtient : 3-2x₁-2x₂-2x₃+2y₁₂+2y₁₃+2y₂₃≥0

Ensuite, on divise par 2 l'inégalité obtenue et on se retrouve dans la situation où le nombre fractionnaire 1 + ½ dont la somme avec un nombre entier (potentiellement négatif) doit être positive ou nulle. On peut alors de façon valide arrondir ce nombre fractionnaire à 1.

2° On veut montrer que $F=\{(x,y): 1-x_1-x_2-x_3+y_{12}+y_{13}+y_{23}=0\}\cap QP_3$ est une facette de QP_3 . Sa dimension ne peut pas excéder 5 puisqu'elle est déjà incluse dans au moins un hyperplan. On considère pour plus de simplicité les points 0-1 de QP_3 . Il y en a 8 et seul 6 sont dans F . Le vecteur 0 n'est pas dans F ainsi que le vecteur composé que de 1 et qui est induit par $x_1=x_2=x_3=1$.

La matrice constituée des 6 points restants disposés en colonne est une matrice carrée, triangulaire supérieure avec des 1 sur la diagonale (en ordonnant convenablement les colonnes). Elle est donc inversible. Ce qui prouve que les 6 points sont linéairement indépendants et donc affinement indépendants. Donc $\dim(F) \ge 5$ et finalement $\dim(F) = 5$. Le point 0 est dans QP_3 et pas dans F. Donc la dimension de QP_3 est distincte de 5 et vaut au moins 6 ce qui est le maximum car il y a 6 coordonnées. Donc $\dim(F) = \dim(QP_3) - 1$.