
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

First-Order Automated Reasoning with Theories:
When Deduction Modulo Theory Meets Practice

Guillaume Burel · Guillaume Bury ·
Raphaël Cauderlier · David Delahaye ·
Pierre Halmagrand · Olivier Hermant

Received: date / Accepted: date

Abstract We discuss the practical results obtained by the first generation of
automated theorem provers based on Deduction modulo theory. In particular,
we demonstrate the concrete improvements such a framework can bring to first-
order theorem provers with the introduction of a rewrite feature. Deduction
modulo theory is an extension of predicate calculus with rewriting both on
terms and propositions. It is well suited for proof search in theories because it
turns many axioms into rewrite rules. We introduce two automated reasoning
systems that have been built to extend other provers with Deduction modulo
theory. The first one is Zenon Modulo, a tableau-based tool able to deal with
polymorphic first-order logic with equality, while the second one is iProver-

A part of this work has been supported by the BWare project [56,107] (ANR-12-INSE-0010)
funded by the INS programme of the French National Research Agency (ANR).

G. Burel
ENSIIE and Samovar, Télécom SudParis and CNRS, Université Paris-Saclay, Évry, France
Inria and LSV, CNRS and ENS Paris-Saclay, Université Paris-Saclay, Cachan, France
E-mail: Guillaume.Burel@ensiie.fr

G. Bury
Inria/LSV/ENS Paris-Saclay, Cachan, France
E-mail: Guillaume.Bury@inria.fr

R. Cauderlier
Irif/Université Paris-Diderot, Paris, France
E-mail: Raphael.Cauderlier@irif.fr

D. Delahaye
LIRMM, Université de Montpellier, CNRS, Montpellier, France
E-mail: David.Delahaye@lirmm.fr

P. Halmagrand
EDF R&D (OSIRIS), Palaiseau, France
E-mail: Pierre.Halmagrand@edf.fr

O. Hermant
CRI, MINES ParisTech, PSL University, Paris, France
E-mail: Olivier.Hermant@mines-paristech.fr

2 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

Modulo, a resolution-based system dealing with first-order logic with equality.
We also provide some experimental results run on benchmarks that show the
beneficial impact of the extension on these two tools and their underlying proof
search methods. Finally, we describe the two backends of these systems to the
Dedukti universal proof checker, which also relies on Deduction modulo theory,
and which allows us to verify the proofs produced by these tools.

Keywords Automated Deduction · Deduction Modulo Theory · First-Order
Logic · Rewriting · Automated Reasoning Systems

1 Introduction

Reasoning within theories, whether decidable or not, has become a crucial point
in automated theorem proving. A theory, commonly formulated as a collection
of axioms, is often necessary to specify, in a concise and understandable way,
the properties of objects manipulated in software proofs, such as lists or arrays.
Each theory has its own features, but a small number of them appear recurrently,
including arithmetic and set theory.

Leaving the axioms and definitions of a given theory at the same level as
the hypotheses is not a reasonable option: first, it induces a combinatorial
explosion in the search space and second, axioms do not bear any specific
meaning that an Automated Theorem Prover (ATP) can take advantage of.
To avoid these drawbacks, Deduction modulo theory [60] proposes to replace
axioms with rewrite rules and provides a framework combining first-order proof
systems with a congruence generated by rewrite rules on terms and propositions.
This last distinctive feature allows us to go beyond pure first-order reasoning.
However, we must take care of preserving desirable properties for proof search,
such as consistency, cut elimination, or completeness.

The goal of Deduction modulo theory is to integrate more closely the theory
into the deduction kernel of the proof system. In a way, it can be seen as a
natural evolution of proof systems in general, where initial systems with few
deduction rules and many axioms (e.g., Frege-Hilbert’s systems) have evolved
into systems with more deduction rules and fewer axioms (e.g., Gentzen’s
natural deduction and sequent calculus). Later, and still in the same vein,
some approaches proposed to transform axioms of theories into deduction rules.
This is the case of Prawitz [92], who proposed to generate introduction and
elimination rules from axioms. More recently, superdeduction [34] provided an
extension of Prawitz’s approach, where the introduction and elimination rules
are compiled: steps of deduction that can be done over the rules are done once
for all, which gives more compact rules. This serves a common purpose, getting
rid of axioms, with the difference that the two previous approaches try to push
axioms into the deduction part of the proof system, while Deduction modulo
theory transforms axioms into computations. As a result, Deduction modulo
theory gives computation its rightful place in proof theory.

To show the beneficial impact of Deduction modulo theory over automated
deduction, we present two automated reasoning systems, that rely on different

Deduction Modulo Theory for Automated Reasoning Tools 3

proof search methods, developed as an extension of two pre-existing provers.
The first one is Zenon Modulo, which is a tableau-based tool able to deal with
polymorphic first-order logic with equality, and which is an extension of the
Zenon ATP [30] to Deduction modulo theory. Compared to the regular version
of Zenon, Zenon Modulo offers the ability to deal with polymorphic types. This
extension may seem orthogonal with respect to the extension to Deduction
modulo theory, but both extensions are actually directly connected. In fact,
introducing types in logic allows us to get rid of typing predicates [105], which
appeared in our benchmark as conditional hypotheses of axioms, and turning
the axioms into rewrite rules is easier as Deduction modulo theory mainly relies
on unconditional rewrite rules. The second ATP described in this paper is
iProverModulo, which is a resolution-based system dealing with first-order logic
with equality, and which is an extension of the iProver ATP [78] to Deduction
modulo theory. Contrary to Zenon Modulo, rewriting is not introduced primi-
tively in iProverModulo (at least not for rules rewriting propositions), but on
top of the resolution mechanism of iProver using ordered polarized resolution
modulo [35] and one-way clauses [59].

When developing automated theorem provers, the critical point is to ensure
the soundness of the implementation, and the two ATPs presented in this paper
provide assurance to this need of soundness by producing proof certificates,
which can be checked by a third party to reach an appropriate degree of
confidence. It may be desirable that these ATPs producing proof certificates
satisfy the De Bruijn criterion (formulated by Barendregt in [9]), i.e. they
generate proof certificates (or even directly proofs) in a format that can be
independently checked by external proof tools. In addition, proof certificates
must be of good quality and some principles tend to emerge in this domain.
One of them is the Poincaré principle (also formulated by Barendregt in [9]),
which is directly related to the size of proofs and which states that traces
of computation should not be included in proof certificates. In this case, the
external proof checker is expected to redo computations by itself and must be
therefore adapted. Zenon Modulo and iProverModulo conform to these criteria
as they are able to produce proofs to be checked by an external proof tool
(De Bruijn’s criterion), called Dedukti [28], which is a universal proof checker
that also relies on Deduction modulo theory. The fact that Dedukti relies on
Deduction modulo theory is quite useful since it allows the ATPs to produce
proofs with no trace of computations and it is enough to provide the rewrite
rules to Dedukti, which can perform the necessary computations when verifying
the generated proofs (Poincaré’s principle).

To assess the improvements that are offered by the integration of Deduction
modulo theory into Zenon Modulo and iProverModulo, we provide some experi-
mental results run on different benchmarks. If clear benefits can be observed
over general-purpose benchmarks, as shown by the results of iProverModulo
over the TPTP library [104], the most significant improvements can be ob-
tained when the considered theory is known in advance and can be modeled
in a tailored fashion in Deduction modulo theory. This is the case with the
benchmark on which Zenon Modulo has been run, and which is made of proof

4 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

obligations in set theory (about 13,000 problems) from the formalization of
industrial applications using the B method [1], and built in the framework of
the BWare project [56,107]. This tends to confirm that in automated deduction,
there is always a tradeoff between the power of the ATP and the way that the
theory is modeled and expressed.

The paper is organized as follows: in Section 2, we introduce the principles
of Deduction modulo theory; in Sections 3 and 4, we present the two ATPs
Zenon Modulo and iProverModulo, with their proof search methods and some
experimental results run on some benchmarks, before discussing, in Section 5,
the approaches used by these two ATPs to integrate Deduction modulo theory;
and in Section 6, we consider some related work regarding proof search modulo
theories in particular.

2 Deduction Modulo Theory

In this section, we introduce the basic principles of Deduction modulo theory,
with the description of some proof and type systems modulo theory, and the
presentation of some examples as well.

2.1 Motivations

Deduction modulo theory arises from the need to introduce pure computations
in proofs. If we wonder what a proof is, two trends seem to be in contradiction
with each other. The first one is the so-called Babylonians’ point of view, due
to the amazing calculating skills developed by the Babylonians about 4000 BC,
and which relies on the fact that in some cases, a proof is just a stream of
computations obtained by applying a deterministic and terminating algorithm.
The second trend, which could be called the Greeks’ point of view due to the
great achievement of the ancient Greeks in introducing demonstrative proofs in
the history of logic, sees a proof as a sequence of deductions coming from the
application of valid inferences to facts, which are (nonlogical) axioms, usually
called “hypotheses”, logical axioms defining particular syntactic constructions
(connectives in the case of Hilbert’s system), or previously inferred facts.

This apparent tension between computation and deduction may appear in
very simple proofs. For example, let us try to prove that ∀x.x+ 2 = s(s(x)) in
Peano arithmetic, where s is the successor symbol. Using only deduction steps,
the proof in sequent calculus with equality is the following:

P2
x+ 2 = s(x+ 1)

P2
x+ 1 = s(x+ 0) =c

s(x+ 1) = s(s(x+ 0))

P1x+ 0 = x =c
s(x+ 0) = s(x) =c

s(s(x+ 0)) = s(s(x)) =t
s(x+ 1) = s(s(x)) =t

x+ 2 = s(s(x))
∀R∀x.x+ 2 = s(s(x))

Deduction Modulo Theory for Automated Reasoning Tools 5

where we use the simplified notation P for “` P”, with P a proposition,
and where n is a notation for s(s(. . . s(0))) with n applications of s to 0 (the
usual zero of Peano arithmetic’s signature). We also assume a proof system
where equality is built-in. In particular, “=t” is the transitivity rule, and “=c”
is the congruence rule. Otherwise, the same proof would have been much more
complex, requiring a context for the equality axioms and an explicit use of
them at every step. In the same way, the Peano axioms are integrated into the
proof system. The (axiomatic) rules P1 and P2 respectively correspond to the
axioms ∀x.x+ 0 = x and ∀x, y.x+ s(y) = s(x+ y).

In this proof, Deduction modulo theory proposes to provide a genuine
computational behavior to the axioms corresponding to the rules P1 and
P2. This computational behavior is given by means of rewrite rules that can
be applied whenever and wherever in the proof (the propositions are then
seen modulo the congruence induced by the rewrite rules). The rewrite rules
corresponding to P1 and P2 are therefore x+ 0→ x and x+ s(y)→ s(x+ y),
and the previous proof becomes:

=r , x+ 2→∗ s(s(x))
x+ 2 = s(s(x))

∀R∀x.x+ 2 = s(s(x))

where =r is the reflexivity rule of equality, and “→∗” the reflexive, transitive,
and congruent closure of the “→” relation.

As can be seen in this proof, computations are interleaved with the deduction
rules, and the proof therefore appears much simpler than the one completed
using pure sequent calculus. In addition to simplicity, Deduction modulo theory
also allows for unbounded proof size reduction [37].

Deduction modulo theory proposes to go further by offering computation
not only over terms, but also over propositions. For example, considering the
inclusion axiom in set theory ∀X,Y.X ⊆ Y ⇔ ∀x.x ∈ X ⇒ x ∈ Y , the proof
of A ⊆ A in sequent calculus has the following form:

Ax
. . . , x ∈ A ` A ⊆ A, x ∈ A

⇒R
. . . ` A ⊆ A, x ∈ A⇒ x ∈ A

∀R
. . . ` A ⊆ A,∀x.x ∈ A⇒ x ∈ A Ax

. . . , A ⊆ A ` A ⊆ A
⇒L

. . . , (∀x.x ∈ A⇒ x ∈ A)⇒ A ⊆ A ` A ⊆ A
∧L

A ⊆ A⇔ ∀x.x ∈ A⇒ x ∈ A ` A ⊆ A ∀L× 2∀X,Y.X ⊆ Y ⇔ ∀x.x ∈ X ⇒ x ∈ Y ` A ⊆ A

In Deduction modulo theory, the inclusion axiom can be seen as a compu-
tation rule, and replaced by the rewrite rule X ⊆ Y → ∀x.x ∈ X ⇒ x ∈ Y .
The previous proof is then transformed as follows:

Ax
x ∈ A ` x ∈ A ⇒R` x ∈ A⇒ x ∈ A ∀R, A ⊆ A→ ∀x.x ∈ A⇒ x ∈ A` A ⊆ A

6 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

where it can be seen, as previously, that computations are clearly sepa-
rated from the deduction rules, and that the proof is much simpler than the
corresponding one in pure sequent calculus.

Deduction modulo theory is one way, among others, most notably Satisfia-
bility Modulo Theories (SMT) solving, to embed those implicit computation
steps into deduction systems. This is what we are about to describe, first by
sketching the language, and then the deduction systems that we work with.

2.2 Rewriting in First-Order Logic

The language of Deduction modulo theory is the language of many-sorted first-
order logic, which we succinctly describe here. This readily adapts to untyped
first-order logic by considering a single sort for terms. A more formalized
extension to (ML-polymorphically) typed first-order logic will be devised in
Section 2.6. Most of the material of this section is adapted from [60], with
slight presentational variations.

We assume a fixed set of sorts and a signature Σ of function and predicate
symbols, associated with an arity n. Function and predicate symbols are also
characterized by n input sorts, in addition, function symbols also have an
output sort. We also assume for each sort a denumerable set of variables,
collectively denoted by V .

For instance, in Section 2.1, +/2 : 〈nat, nat, nat〉, s/1 : 〈nat, nat〉, 0/0 : 〈nat〉
are respectively binary, unary, and nullary (constant) function symbols, while
=/2 : 〈nat, nat〉 is a binary predicate symbol. They all take (and define, for
function symbols) terms of sort nat. Given those, we form terms and predicate
instances (atomic formulas) as usual: a term/formula f(t1, · · · , tn) is well-
formed if and only if the terms ti have sorts that comply with the input sorts
of the n-ary symbol f . If f is a function symbol, the resulting term has sort
the output sort of f .

The logical connectives are ∧,∨,⇒ (binary), ¬ (unary) and ⊥,> (nullary),
and the quantifiers are ∀ and ∃, they allow forming compound formulas. Later,
we will also use the binary connective ⇔. The set of free variables of a term t,
respectively a formula A, is noted FV (t), and FV (A) respectively.

The substitution of u for x is a function associating terms with terms
and formulas with formulas. It is noted [u/x](t) and [u/x](A), or for short
[u/x]t and [u/x]A. u and x have to be of the same sort. As a consequence,
substitutions respect sorts on all terms and formulas. We extend this notion to
parallel substitutions, which replace multiple variables in parallel. They will
be noted ρ, σ, and these notations will be also used for the same concept in
other contexts (e.g., type substitutions and free type variables in Section 2.6.2)
throughout this paper.

Unless otherwise stated, formulas are denoted by A,B,C, and when we
want to emphasize their atomicity by P,Q,R. Sets (or multisets) of formulas
are denoted by Γ,∆.

Deduction Modulo Theory for Automated Reasoning Tools 7

Definition 1 (Rewrite Rule, Equational Axiom, Rewrite System) A
Term Rewrite Rule is a pair of terms t, u of the same sort, denoted by t→ u,
such that FV (u) is included in FV (t).

A Proposition Rewrite Rule is a pair of formulas P, F , denoted by P → F ,
such that P is an atomic formula and FV (F) is included in FV (P).

An Equational Axiom is a pair of terms t, u, denoted by t = u.
A Rewrite System is a pair RE composed of a set R of rewrite rules over

terms and propositions, and a set E of equational axioms.

Each variable in FV (t), FV (u), and FV (P) has a sort. We additionally
record them in a local (typing) context Γ . A fully-fledged term rewrite rule
is therefore defined as t →Γ u. This becomes necessary in the extensions of
Section 2.6, but we avoid this for the moment, as sorts are statically assigned.

Definition 2 (Equality Modulo E) Let E be a set of equational axioms,
and t, u two terms. t and u are E-convertible, denoted by t =E u, if and only if:
– either there exists an equational axiom e1 = e2 ∈ E , and a substitution σ,

such that t = σ(e1) and σ(e2) = u;
– or t = f(t1, · · · , tn), u = f(u1, · · · , un) and ti =E ui for every i;
– or t is u; or u =E t; or there exists a term v, such that t =E v and v =E u.
In other words, =E is the congruence relation generated by E , which means
that the binary relation =E is the smallest relation containing E and stable by
substitution, context relation, reflexivity, symmetry, and transitivity.

Most of the paper will consider an empty set of equational axioms E , in
which case it will be omitted.

Definition 3 (Rewriting Relation) Let RE be a rewrite system, and t, u
two terms. t rewrites to u, denoted by t→ u, if and only if:
– either there exist a term rewrite rule l→ r ∈ R and a substitution σ, such

that t =E σ(l) and u =E σ(r);
– or t = f(t1, · · · , tn), u = f(u1, · · · , un), and ti → ui for exactly one index
i, while ti is identical to ui for the rest of the indices.

Let A,B be two formulas. A rewrites to B, denoted by A→ B, if and only if:
– either there exist a proposition rewrite rule l→ r ∈ R and a substitution
σ, such that A =E σ(l) and B =E σ(r);

– or A = P (t1, · · · , tn), B = P (u1, · · · , un), and ti → ui for exactly one index
i, while ti is identical to ui for the rest of the indices;

– or A and B are compound formulas with the same main connective/quanti-
fier, and exactly one pair of the corresponding subformulas rewrites one to
another, the rest of the corresponding subformulas being identical.

In other words, the relation→ is the closure of RE by substitution and context
relation. Its transitive closure is denoted by →+, its reflexive and transitive
closure by →∗, and its reflexive, transitive, and symmetric closure by ≡, which
is a congruence relation. The restriction of this congruence to the term rewrite
rules of R and the equational axioms of E is denoted by ≡t.

8 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

ax
Γ, P ` P,∆

Γ ` A,∆ Γ,A ` ∆
cut

Γ ` ∆

Γ,A,B ` ∆ ∧L
Γ,A ∧B ` ∆

Γ ` A,∆ Γ ` B,∆ ∧R
Γ ` A ∧B,∆

Γ,A ` ∆ Γ,B ` ∆ ∨L
Γ,A ∨B ` ∆

Γ ` A,B,∆ ∨R
Γ ` A ∨B,∆

Γ ` A,∆ Γ,B ` ∆ ⇒L
Γ,A⇒ B ` ∆

Γ,A ` B,∆ ⇒R
Γ ` A⇒ B,∆

Γ,A ` ∆
∃L

Γ,∃x.A ` ∆
Γ ` [t/x]A, ∃x A,∆

∃R
Γ ` ∃x.A,∆

Γ,∀x.A, [t/x]A ` ∆
∀L

Γ,∀x.A ` ∆
Γ ` A,∆

∀R
Γ ` ∀xA,∆

Fig. 1 Deduction Rules of the Classical First-Order Sequent Calculus G3

Some properties of interest of a rewriting relation are the following:

Definition 4 (Confluence, Termination) A rewrite system is said to be:

– confluent if for any terms, respectively formulas, such that t ≡ u, there
exists a term, respectively a formula, v, such that t→∗ v and u→∗ v.

– terminating if any term or formula rewriting sequence t1 → · · · → tn → · · ·
is finite.

Confluence and termination imply that, given two terms (or formulas) t
and u, the relation t ≡ u is decidable.

2.3 First-Order Logic Modulo Theory

Rewrite systems RE will be considered as a parameter of deduction systems
that rely on Deduction modulo theory, as well as theories can be seen as
a parameter when we reason within axiomatic theories. We can therefore
reason modulo a rewrite system for arithmetic, for set theory, etc. Building
on Definition 3 and the philosophy developed in the introduction, we aim to
freely juggle convertible formulas, while reasoning on them.

We will show how this can be done within sequent calculus for classical logic,
whose deduction rules are summarized in Figure 1. We present the calculus
G3, which does not need structural rules (contraction, weakening). The next
two paragraphs sketch the features of this calculus. For more details, see [99].

A sequent is a pair of sets of formulas, the hypotheses and the conclusions
respectively, separated by the turnstile symbol, denoted by Γ ` ∆, and whose
meaning is “from the conjunction of hypotheses Γ follows one of the conclusions
of ∆ (more precisely, its disjunction)”. Dealing with sets forbids repetition of

Deduction Modulo Theory for Automated Reasoning Tools 9

Γ,B ` ∆
convL, A ≡ B

Γ,A ` ∆
Γ ` B,∆

convR, A ≡ B
Γ ` A,∆

Fig. 2 The Conversion Rules of G3conv

formulas, this detail is not relevant in this paper, note only that Γ and ∆
are allowed to be empty. A sequent rule reads bottom-up. For example, the
∧R-rule can be read as “to show the conclusion sequent Γ ` A ∧B,∆ from Γ ,
we have to show both premises Γ ` A,∆ and Γ ` B,∆”. Therefore, proofs are
complete when no branch of the proof tree is open, with the sole axiom rule
being able to close a branch. Finally, the variable x in the ∀R and ∃L rules
obeys the eigenvariable condition, it must not be free in Γ,∆ (x /∈ FV (Γ,∆)),
if it is not the case, we need to rename (α-convert) x before applying the rule.

Lastly, the axiom rule involves only atomic formulas, as is the case in G3.
This condition can be relaxed. Along with the axiom rule, the only other rule
not dealing with a connective or a quantifier is the cut rule. It may be included,
or not, in the sequent calculus. Its admissibility (and its elimination) is of
paramount importance in logic, for practical as well as theoretical reasons [106]:
to cite a few, in the presence of the cut rule, the proof search space blows
up immediately and the calculus cannot be directly shown consistent, and its
elimination corresponds, through the Curry-De Bruijn-Howard correspondence,
to program termination.

We can integrate conversion modulo RE to the deduction rules by adding
the left and right conversion rule of Figure 2 to the rules of Figure 1.

The rules convL and convR are the two computation rules of the classical
sequent calculus modulo theory G3conv, and they are separated from the
deduction rules. However, we usually prefer a more seamless embedding of
computation inside deduction rules, therefore merging the conversion rules
with the deduction rules, as presented in Figure 3, where the same eigenvariable
proviso holds on the ∀R and ∃L rules. The calculus G3≡ reflects the spirit of
identification of equivalent formulas modulo RE : we are allowed to perform
deduction on any representative of an equivalence class.

The different variants of sequent calculus, and the different ways to add
rewriting modulo theory to it, are all equivalent with respect to provability, at
least when considered with the cut rule. Without the cut rule, major variations,
such as allowing only forward rewriting (C →∗ A ∧B in the ∧L and ∧R rules),
may require specific properties of the rewrite system, such as confluence or cut
admissibility, to guarantee system equivalence [58,40].

Using a pattern very similar to the one just described for sequent calculus,
it is possible to embed conversion by using the rewriting relation within natural
deduction [61].

10 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

ax, if A ≡ B
Γ,A ` B,∆

Γ ` A,∆ Γ,B ` ∆
cut, if A ≡ B

Γ ` ∆

Γ,A,B ` ∆
∧L, if C ≡ A ∧ B

Γ,C ` ∆
Γ ` A,∆ Γ ` B,∆

∧R, if C ≡ A ∧ B
Γ ` C,∆

Γ,A ` ∆ Γ,B ` ∆
∨L, if C ≡ A ∨ B

Γ,C ` ∆
Γ ` A,B,∆

∨R, if C ≡ A ∨ B
Γ ` C,∆

Γ ` A,∆ Γ,B ` ∆
⇒L, if C ≡ A⇒ B

Γ,C ` ∆
Γ,A ` B,∆

⇒R, if C ≡ A⇒ B
Γ ` C,∆

Γ,A ` ∆
∃L, if C ≡ ∃x.A

Γ,C ` ∆
Γ ` [t/x]A,C,∆

∃R, if C ≡ ∃x.A
Γ ` C,∆

Γ,C, [t/x]A ` ∆
∀L, if C ≡ ∀x.A

Γ,C ` ∆
Γ ` A,∆

∀R, if C ≡ ∀x.A
Γ ` C,∆

Fig. 3 Deduction Rules of the Classical First-Order Sequent Calculus Modulo Theory G3≡

2.4 Practical Aspects of Proof Search Modulo Theory

Proof search strategies have to mix instantiation of quantifiers with rewrite
steps and take into account narrowing, if we want to target completeness of
the proof search. However, note that completeness is not necessarily desirable
when it comes to practical performances.
Definition 5 (Narrowing Relation) Let R be a rewrite system, and t, u
two terms. t is narrowed into u using substitution σ, denoted by t σ u, if
and only if t is not a variable and:
– either there exists a term rewrite rule l→ r ∈ R (renamed so that l and t

do not share any variable), such that σ(t) = σ(l) and u = σ(r);
– or t = f(t1, · · · , tn), u = f(u1, · · · , un), and ti σ ui for exactly one index
i, while ui is identical to σ(ti) for the rest of the indices.

Let A,B be two formulas. A is narrowed into B using substitution σ, denoted
by A σ B, if and only if:
– either there exists a proposition rewrite rule l→ r ∈ R (renamed so that l

and A do not share any variable), such that σ(A) = σ(l) and B = σ(r);
– or A = P (t1, · · · , tn), B = P (u1, · · · , un), and ti σ ui for exactly one

index i, while ui is identical to σ(ti) for the rest of the indices;
– or A and B are compound formulas with the same main connective/quan-

tifier, and exactly one pair of the corresponding subformulas is narrowed
one into another, the rest of the corresponding subformulas being identical
after applying σ.

In other words, is like → except that it makes use of unification instead of
pattern matching on the left-hand side.

Some introductory examples have already been discussed in Section 2.1,
and real-world examples will be the matter of further developments. In this
section, we want to illustrate a few points that we have to care about.

Deduction Modulo Theory for Automated Reasoning Tools 11

A typical example of equational axioms are axioms stating commutativity
or associativity of some function symbols, for instance, writing the binary
symbol + in an infix fashion:

x+ y = y + x x+ (y + z) = (x+ y) + z

Now, let us consider the rewrite rule x+0→ x and the goal ∃x.∃y.x+y = x.
Two ingredients are necessary to prove this formula:
– We need to instantiate y by 0, which means, from an automated deduction

point of view, trying to unify the expression x+ y with rewrite rules that
can apply to it, since the symbol + is a symbol that we can rewrite on. It
becomes even more complex if we need to perform narrowing modulo the
equations just described above, for instance if the goal is ∃x.∃y.x+ y = y.

– We also need to keep on rewriting in the middle of the proof. In particular,
pre-normalizing the goal is not sufficient since some term instantiations may
trigger new rewrite rules. Moreover, as we have also propositional rewriting,
an atomic formula may generate a compound one.
Therefore, deciding when, where, and how far to rewrite is fully part of

the proof search strategy. For instance, narrowing is costly and might be only
partially implemented, e.g., on some symbols or at some places only (specific
occurrences in specific predicates), at the price of losing completeness.

2.5 Polarized Rewriting in First-Order Logic Modulo Theory

A variant of Deduction modulo theory, implemented in iProverModulo and
therefore considered in this paper, is polarized Deduction modulo theory, where
rewrite rules apply only on formulas to the right-hand or left-hand side of
sequents, depending on their polarity (we could also say, laterality).

Definition 6 (Positive Occurrence) An occurrence of a formula F in a
formula G is said to be positive if it appears under negation or on the left of
an implication, an even number of times (including zero). Otherwise, it is said
to be negative.

For instance, in (¬A)⇒ B, both B and A have positive occurrences, while
¬A has a negative occurrence.

We refine the rewrite relation of Definition 3 into positive and negative
rewriting. This obviously applies only to formulas.

Definition 7 (Polarized Rewriting) Let RE be a rewrite system, such that
the propositional rewrite rules of R are partitioned into R+ ∪R−, the positive
and negative rewrite rules. Let A,B be two formulas, A positively rewrites to
B, denoted by A→+ B and, respectively, A negatively rewrites to B, denoted
by A→− B, if and only if:

– either there exist a proposition rewrite rule l → r ∈ R+ (respectively,
l→ r ∈ R−) and a substitution σ, such that A =E σ(l) and B =E σ(r);

12 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

ax, if A→∗− C
and B →∗+ CΓ,A ` B,∆

Γ ` A,∆ Γ,B ` ∆
cut, if C →∗+ A

and C →∗− BΓ ` ∆

Γ,A,B ` ∆
∧L, if C →∗− A ∧ B

Γ,C ` ∆
Γ ` A,∆ Γ ` B,∆

∧R, if C →∗+ A ∧ B
Γ ` C,∆

Γ,A ` ∆ Γ,B ` ∆
∨L, if C →∗− A ∨ B

Γ,C ` ∆
Γ ` A,B,∆

∨R, if C →∗+ A ∨ B
Γ ` C,∆

Γ ` A,∆ Γ,B ` ∆
⇒L, if C →∗− A⇒ B

Γ,C ` ∆
Γ,A ` B,∆

⇒R, if C →∗+ A⇒ B
Γ ` C,∆

Γ ` A,∆
¬L, if C →∗− ¬A

Γ,C ` ∆
Γ,A ` ∆

¬R, if C →∗+ ¬A
Γ ` C,∆

Γ,B ` ∆
∃L, if A→∗− ∃xB

Γ,A ` ∆
Γ ` C,A,∆

∃R, if A→∗+ ∃xB
and [t/x]B →∗+ CΓ ` A,∆

Γ,A,C ` ∆
∀L, if A→∗− ∀xB

and [t/x]B →∗− CΓ,A ` ∆
Γ ` B,∆

∀R, if A→∗+ ∀xB
Γ ` A,∆

Fig. 4 Deduction Rules of the Sequent Calculus Modulo Polarized Theory G3≡+

– or A = P (t1, · · · , tn), B = P (u1, · · · , un), and ti → ui for exactly one index
i, while tj is identical to uj for any other j;

– or A and B are compound formulas with the same main connective/quan-
tifier, and exactly one pair of the corresponding subformulas rewrites one
to another. The said subformulas must rewrite positively (respectively,
negatively), except under a negation or at the left of an implication, where
they must rewrite negatively (respectively, positively). The remaining cor-
responding subformulas have to be identical.

→∗+ and→∗− are the reflexive and transitive closure of→+ and→− respectively.

The polarized sequent calculus modulo theory is presented in Figure 4.
Generalizing the convertibility side condition with a ≡+ relationship is of
limited interest in practice. Actually, ≡+ cannot be a congruence relation,
as symmetry cannot hold. Instead, ≡+ should be defined as the reflexive
and transitive closure of →+ ∪ −←, where A −← B is defined as B →− A:
“backward negative rewriting” and “forward positive rewriting” are on the same
side. This corresponds to the intuition that while, in Deduction modulo theory,
the rewrite rule A→ B stands for the axiom ∀x.A⇔ B (the universal closure
of the formula), in polarized Deduction modulo theory, A →+ B stands for
the axiom ∀x.B ⇒ A and A →− B stands for the axiom ∀x.A ⇒ B. This
symmetric role of →+ and →− can also be seen in the properties of polarized
sequent calculus modulo theory, in particular the cut and axiom rules.

Although polarized Deduction modulo theory leads to more elegant presen-
tations of theories in which there are implicational axioms, it can be related to
usual Deduction modulo theory:

Theorem 1 ([40, Corollary 10]) Given a polarized rewriting system R,
there exists an unpolarized rewriting system R∓ such that provability (resp.

Deduction Modulo Theory for Automated Reasoning Tools 13

provability without cut) in G3≡+ modulo R coincides with provability (resp.
provability without cut) in G3≡ modulo R∓ (with forward rewriting only).

2.6 Polymorphic First-Order Logic Modulo Theory

We now switch to a more formal presentation of the syntax and type system
of polymorphic first-order logic, denoted by Poly-FOL. This presentation is an
adaptation of [22,23].

2.6.1 Syntax

The syntax of Poly-FOL is given in Figures 5 and 6 for types, type schemes
(that bind type variables) used for polymorphic symbols, terms, formulas, and
type-quantified formula. Functions and predicates may now be polymorphic
and bear type arguments. In this context, formulas may be quantified over
types, as long as these quantifications are universal and come at the very head
of formulas.

We let Type be the type of types and assume that each type is inhabited,
at least by an infinity of variables of this type.

We write f for f() when f has arity 0. In addition, we may sometimes
denote by ~α and ~x lists of respectively type and term variables α1 . . . αm and
x1 . . . xn when parameters m and n are known from the context.

Instead of defining, rather informally, a signature Σ, as in Sections 2.2 and
2.3, we follow a type-theoretic fashion and explicitly give the notion of local
and global contexts in Figure 6, as pairs composed of a symbol and a type.
Having contexts gives us the possibility to formalize the typing and well-formed
context judgments in the subsequent Section 2.6.2. The global context ΓG
contains constant symbols, the equivalent of a signature, while the local context
ΓL contains variable symbols. In the declaration of type constructors, m is the
arity of the constructor.

2.6.2 Typing

In the following, given an expression e, term or formula, we denote by FVT(e)
the set of type variables occurring freely in e, either in type arguments of
polymorphic symbols or in the types of variables, and FV(e) the set of term
variables occurring freely in e.

A formula A is said to be monomorphic if it is not a type-quantified formula
and if FVT(A) is empty. Otherwise, the formula is said to be polymorphic. A
formula A is said to be closed if both FVT(A) and FV(A) are empty.

We define by mutual induction the well-formedness judgment wf(Γ), whose
inference rules are presented in Figure 7, meaning that the context Γ := ΓG;ΓL
is well-formed, and the typing judgment Γ ` t : τ , whose inference rules are
presented in Figure 8, meaning that the term t is well-typed and of type τ
in the well-formed context Γ . A consequence of those rules is that for any
well-formed global context ΓG, FVT(ΓG) is empty, as well as FV(ΓG).

14 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

Type

τ ::= α (type variable)
| T (τ1, . . . , τm) (type constructor application)

Type Scheme

σ ::= Πα1 . . . αm. τ1 × . . .× τn → τ (function type signature)
| Πα1 . . . αm. τ1 × . . .× τn → o (predicate type signature)

Term

t ::= x (variable)
| f(τ1, . . . , τm; t1, . . . , tn) (function application)

Formula

A ::= > | ⊥ (true, false)
| ¬A (negation)
| A1 ∧A2 | A1 ∨A2 (conjunction, disjunction)
| A1 ⇒ A2 | A1 ⇔ A2 (implication, equivalence)
| P (τ1, . . . , τm; t1, . . . , tn) (predicate application)
| ∃x : τ. A (existential quantification)
| ∀x : τ. A (universal quantification)

Type Quantified Formula

AT ::= A (formula)
| ∀α. AT (type quantification)

Fig. 5 Syntactic Categories of Poly-FOL

Local Context

ΓL ::= ∅ (empty context)
| ΓL, α : Type (type variable declaration)
| ΓL, x : τ (term variable declaration)

Global Context

ΓG ::= ∅ (empty context)
| ΓG, T :: m (type constructor declaration)
| ΓG, f : σ (function declaration)
| ΓG, P : σ (predicate declaration)

Fig. 6 Contexts of Poly-FOL

2.6.3 Adding Rewriting

In addition to the many-sorted version of Section 2.3, we now have type
variables. The approach of Definition 3 does not need substantial modifications.
The notion of well-formedness for contexts of Figure 7 needs only the following
additional derivation rule:

Deduction Modulo Theory for Automated Reasoning Tools 15

WF1
wf(∅;∅)

x 6∈ ΓL ΓG;ΓL ` τ : Type
WF2

wf(ΓG;ΓL, x : τ)

α 6∈ ΓL wf(ΓG;ΓL)
WF3

wf(ΓG;ΓL, α : Type)
T 6∈ ΓG wf(ΓG;∅)

WF4
wf(ΓG, T :: m;∅)

f 6∈ ΓG

ΓG;α1 : Type, . . . , αm : Type ` τi : Type, i = 1 . . . n
ΓG;α1 : Type, . . . , αm : Type ` τ : Type

WF5
wf(ΓG, f : Πα1 . . . αm. τ1 × . . .× τn → τ ;∅)

P 6∈ ΓG ΓG;α1 : Type, . . . , αm : Type ` τi : Type, i = 1 . . . n
WF6

wf(ΓG, P : Πα1 . . . αm. τ1 × . . .× τn → o;∅)

Fig. 7 Context Well-Formedness Rules for Poly-FOL

α : Type ∈ Γ
TVar

Γ ` α : Type
x : τ ∈ Γ

Var
Γ ` x : τ

Γ ` τ : Type Γ, x : τ ` A(x) : o
ε

Γ ` ε(x : τ). A(x) : τ
T :: m ∈ Γ Γ ` τi : Type, i = 1 . . .m

TCstr
Γ ` T (τ1, . . . , τm) : Type

f : Πα1 . . . αm.τ1 × . . .× τn → τ ∈ Γ
ρ = [α1/τ ′1, . . . , αm/τ

′
m]

Γ ` τ ′i : Type, i = 1 . . .m
Γ ` ti : ρ(τi), i = 1 . . . n

Fun
Γ ` f(τ ′1, . . . , τ ′m; t1, . . . , tn) : ρ(τ)

P : Πα1 . . . αm.τ1 × . . .× τn → o ∈ Γ
ρ = [α1/τ ′1, . . . , αm/τ

′
m]

Γ ` τ ′i : Type, i = 1 . . .m
Γ ` ti : ρ(τi), i = 1 . . . n

Pred
Γ ` P (τ ′1, . . . , τ ′m; t1, . . . , tn) : o

>
Γ ` > : o ⊥

Γ ` ⊥ : o
Γ ` A1 : o Γ ` A2 : o

∧
Γ ` A1 ∧A2 : o

Γ ` A1 : o Γ ` A2 : o
∨

Γ ` A1 ∨A2 : o
Γ ` A1 : o Γ ` A2 : o ⇒

Γ ` A1 ⇒ A2 : o

Γ ` A1 : o Γ ` A2 : o ⇔
Γ ` A1 ⇔ A2 : o

Γ ` A : o ¬
Γ ` ¬A : o

Γ ` t1 : τ Γ ` t2 : τ =
Γ ` t1 =τ t2 : o

Γ, x : τ ` A : o
∃

Γ ` ∃x : τ. A : o
Γ, x : τ ` A : o

∀
Γ ` ∀x : τ. A : o

Γ, α : Type ` AT : o
∀T

Γ ` ∀α. AT : o

Fig. 8 Typing Rules for Poly-FOL

ΓG;ΓL ` l : τ ΓG;ΓL ` r : τ
FVT(r) ⊆ FVT(l)
FV(r) ⊆ FV(l)

WF7wf(ΓG, l→ΓL r;∅)

In this way, rewrite rules are an integral part of the global context. This also
implies the property that FVT(r) ⊆ FVT(l) ⊆ ΓL and FV(r) ⊆ FV(l) ⊆ ΓL. A
rewrite system RE is well-formed in a global context ΓG if all the rewrite rules

16 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

are well-formed in ΓG. In what follows, we consider only such rewrite systems.
Note also that rewrite rules are not used in the typing rules of Figure 8 (see
Section 2.7).

When applying a rewrite rule, we must now instantiate both term and type
variables, which leads to the following modification of Definition 3. We assume
given a global context ΓG.

Definition 8 (Typed Rewriting Relation) Let RE be a rewrite system,
and t, u two terms or formulas. t rewrites to u, denoted by t→ u if and only if:
– either there exist a term or proposition rewrite rule l →ΓL r ∈ R, a well-

typed type substitution ρ, and a well-typed term substitution σ, such that
t =E σ(ρ(t)) and u =E σ(ρ(r));

– or one of the other clauses of Definition 3 related to rewriting in subterms
or subformulas is satisfied.

We do not explicitly present well-typedness rules for substitutions. They
impose that, for each elementary substitution [τ/α] that composes ρ, τ and
α must have the same type in ΓG;ΓL, and for each elementary substitution
t/x that composes σ, t and x must have the same type in ΓG; ρ(ΓL). Here,
ρ(ΓL) denotes ΓL where α : Type is removed if α is in the domain of ρ, and
substituted everywhere else. Extending Figure 8 is straightforward, but requires
boilerplate technical results, for instance the derivability of wf(ΓG; ρ(ΓL)).

The sequent calculus for Poly-FOL with rewriting is identical to the one of
Figure 3 with two additional rules accounting for universal type quantification.
These two new rules have no conversion side condition, because no rewrite rule
acts on types.

2.7 Higher Type Systems Modulo Theory

Through the Curry-De Bruijn-Howard lens, the inference systems that we have
overviewed previously are type systems. But, as type systems, they lack the
precision and versatility offered by other facets of the λ cube [10]. We may also
want to allow rewriting within the typing relation.

Several approaches have extended the “modulo theory” approach to typing.
We can for instance cite CoqMT [103] or the Calculus of Algebraic Construc-
tions [24]. An approach that follows the lines of Deduction modulo theory is the
introduction of rewriting inside a logical framework based on typed λ-calculus
with dependent types [70]. This results in the λΠ-calculus modulo theory [51]
and has been implemented in the Dedukti tool [6,28,96].

Combining the computational power of β-reduction (function application)
and rewriting results with the possibility to define shallow embeddings of many
systems, including Coq [27], Matita [3], HOL Light [4,3,5], FoCaLiZe [46,47],
etc. Dedukti is mature enough to be able to check large libraries coming from
those systems. As it understands rewriting natively, it is the tool that we chose
to double-check the proofs produced by our ATPs based on Deduction modulo
theory and presented in Sections 3 and 4.

Deduction Modulo Theory for Automated Reasoning Tools 17

2.8 Soundness and Completeness

First-order Deduction modulo theory enjoys the standard Tarskian Boolean
model semantics for classical logic, with the additional constraint that the
rewrite system must be respected.

Definition 9 (Model of RE) Let Σ be a signature, RE a rewrite system,
Ds a family of sets indexed by sorts (the domain), and B a Boolean algebra.
An interpretation of the signature Σ is given by mapping each function symbol
f/n : 〈s1, · · · , sn, so〉 to a function from Ds1 × · · · × Dsn to Dso and each
predicate symbol P/n : 〈s1, · · · , sn〉 to a function from Ds1 × · · · ×Dsn to B.
It generates by induction an interpretation function, denoted by J K, over terms
and formulas. This interpretation is parameterized by an assignment, mapping
variables of sort s to elements of Ds.

An interpretation J K is a model of RE if and only if, for any assignment ϕ,
any terms t, u and formulas A,B, we have:

t ≡ u implies JtKϕ = JuKϕ
A ≡ B implies JAKϕ = JBKϕ

With this notion of a model, we can state and prove the soundness and
completeness theorems for sequent calculus. Notice that we do not only consider
the Boolean algebra {0, 1}, although this algebra is initial. This enhanced
flexibility is important for the constructivity of some of the proofs discussed in
this section.

In particular, a Boolean algebra is equipped with an order relation ≤, and
all algebras introduced here are complete, in the sense that arbitrary (and
not only finite) lowest upper bounds and greatest lower bounds always exist.
As not to further discuss semantics, which is not the core of this paper, we
introduce syntactic arbitrary conjunctions and disjunctions

∧
and

∨
.

Theorem 2 (Soundness) Let RE be a rewrite system and Γ ` ∆ a sequent.
Assume that it has a proof in sequent calculus modulo RE.

Then for any (complete) Boolean algebra, any domain D, any interpretation
J K that is a model of RE, and any assignment ϕ, we have J

∧
Γ Kϕ ≤ J

∨
∆Kϕ.

This theorem is proved by a simple induction over the rules of Figure 3.
This easily extends to proof systems like natural deduction or tableaux modulo
theory.

Theorem 3 (Completeness) Let RE be a rewrite system and Γ ` ∆ a
sequent. Assume that for any (complete) Boolean algebra, any domain D, any
interpretation J K, and any assignment ϕ, we have J

∧
Γ Kϕ ≤ J

∨
∆Kϕ.

Then Γ ` ∆ has a proof in sequent calculus modulo RE.

The idea behind such a theorem (in the case of sequent calculus) is to define
a specific algebra, linked to provability. Instead of taking the Gödel-Henkin

18 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

path, we sketch the Lindenbaum construction, which takes advantage of the
extra flexibility introduced above.

The elements of the Lindenbaum algebra are all the:

[A] := {B | both sequents B ` A and A ` B are provable}

for any closed formula A. This algebra is ordered by derivability (A ≤ B
if and only if A ` B has a proof), the least upper bound is disjunction, the
greatest lower bound is conjunction, etc. The simplest choice for the domain
D is the set of open terms, terms are merely interpreted by themselves1. The
assignment ϕ can then be chosen to be the identity, mapping each term variable
x to itself. Then, by the definition and properties of the Lindenbaum algebra,
we get to show that [

∧
Γ] = J

∧
Γ Kϕ ≤ J

∨
∆Kϕ = [

∨
∆] and we can conclude

that
∧
Γ `

∨
∆ is derivable, which by inversion [72] turns into a derivation of

Γ ` ∆.
Completeness, as it is stated in Theorem 3, holds for sequent calculus and

natural deduction for any rewrite system RE . However, in the general case, it
does not hold for tableau calculi modulo theory, unless we allow the cut rule,
neither does it hold for resolution modulo theory.

The statement of completeness can be strengthened to generate cut-free
proofs of the sequent Γ ` ∆. Such a statement entails cut admissibility by a
direct combination with Theorem 2 [71]. This has a huge impact:
– It is impossible to prove such a theorem for an arbitrary rewrite system,

even confluent and terminating [71]. Actually, this property depends on
the rewrite system and is undecidable [40]. The simplest, nonterminating,
rewrite system that does not enjoy cut elimination is composed of the
unique rewrite rule P → P ⇒ Q. In this system, ` Q can be proved using
a cut rule around formula P , but it cannot without cut.

– Cut-free completeness for sequent calculus and natural deduction modulo
theory is equivalent to completeness of tableaux and resolution modulo
theory, as those calculi translate to cut-free proofs [72].

– The Lindenbaum construction is too weak to show cut-free completeness: a
cut is required to show transitivity of the order relation. To solve this, we
can either refine the Gödel-Henkin approach, which results in tableau-like
completeness proofs [31], or define the algebra differently, along the lines of
Maehara [80], Okada [88], and Lipton and DeMarco [79]. Sketching such
proofs, which can be found in [31,32] and depend on the rewrite system,
is beyond the scope of this paper. Let us simply mention that the algebra
contains sets of contexts, with base elements that are all the:

dAe := {Γ | Γ ` A is derivable without a cut}

It is closed by arbitrary intersections and ordered by inclusion.
1 This does not strictly conform to Definition 9, as two equivalents terms t ≡ u must

receive the same interpretation. This can be technically fixed by letting D be composed
of equivalence classes of terms, or by interpreting terms by their normal forms (it requires
confluence and termination), or by dropping the JtKϕ = JuKϕ constraint over terms in
Definition 9.

Deduction Modulo Theory for Automated Reasoning Tools 19

Thanks to Theorem 1, all the discussion about cut-free completeness in
Deduction modulo theory applies to polarized Deduction modulo theory as
well. There are systems for which it does not hold, the simplest one being:

P →− Q
P →+ >

This system is a polarized version of the unpolarized P → P ⇒ Q above
and, indeed, ` Q can be proved using a cut rule around formula P , but it
cannot without cut.

Given a rewriting system that does not enjoy cut-free completeness, there
exist techniques to complete it to recover this property [40,39]. Those techniques
are enhanced Knuth-Bendix completion procedures, that may not terminate,
and geared towards cut admissibility instead of confluence. Also, any consistent
first-order theory can be presented using a polarized rewriting system having
this property [36].

If we are interested by a direct notion of model for polarized Deduction
modulo theory, and direct completeness proofs, then we should weaken the
notion of model presented in Definition 9.

Definition 10 (Model of a Polarized RE) Let Σ be a signature, RE a
rewrite system, such that R is partitioned into R+ ∪R−.

Consider an interpretation J K, defined as in Definition 9, in a Boolean
algebra. Let ≤ be the induced ordering.

J K is a model of polarized RE if and only if for any assignment ϕ, any terms
t, u and formulas A,B, we have:

t ≡ u implies JtKϕ = JuKϕ
A →+ B implies JAKϕ ≥ JBKϕ
A→− B implies JAKϕ ≤ JBKϕ

Proving soundness and completeness theorems of G3≡+ with respect to
this notion of polarized model is a straightforward adaptation of the proofs of
Theorem 2 and Theorem 3 above. Cut-free completeness proofs have not yet
been investigated.

No first-order polymorphic semantics for Poly-FOL modulo theory has been
introduced yet. As for polarized rewriting, one could use existing encoding of
Poly-FOL in monomorphic calculi [22], as a first step towards indirect soundness
and completeness results, and next, to develop a proper semantic framework.

3 The Zenon Modulo Automated Theorem Prover

This section presents the Zenon Modulo ATP, which is an extension to poly-
morphism and Deduction modulo theory of the Zenon tableau-based ATP [30].

20 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

Type

| ΛType (type metavariable)

Term

| Xτ (metavariable)
| ε(x : τ).A(x) (ε-term)

Formula

| t1 =τ t2 (term equality)

Fig. 9 Additions to the Syntactic Categories of Poly-FOL of Figure 5

TMeta
Γ ` ΛType : Type

Γ ` τ : Type
Meta

Γ ` Xτ : τ

Fig. 10 Additions to the Typing Rules of Poly-FOL of Figure 8

3.1 Specific Constructs

Zenon Modulo’s features, whose behaviors are detailed later in this section,
impose us to enlarge some categories and judgments of Section 2.6.

Zenon Modulo uses the expressions of Poly-FOL of Figure 5, with in addition
the expressions of Figure 9. Proof search efficiency calls for metavariables
(capitalized here, often named free variables in tableau-related literature), used
to guess concrete instances through unification, as well as Hilbert’s ε-terms at
the term level (ε(x : τ).A(x) is a term meaning some x of type τ that satisfies
A(x), if it exists), an alternative to Skolem terms. The type level does not
require ε-terms, since existential type quantification is beyond the scope of
ML-polymorphism. In addition, Zenon Modulo has a specific treatment for the
equality symbol, which is a polymorphic predicate symbol, noted =, of type
Πα.α × α → o. This predicate is introduced as a separate construct and we
use the common infix notation t1 =τ t2, and t1 6=τ t2 instead of ¬(t1 =τ t2).
These new constructs follow the additional typing rules of Figure 10.

3.2 Proof Search in Zenon Using Polymorphic Types

3.2.1 Proof Search Rules

The rules summarized in Figures 11 and 12 are an adaptation of the rules of
Zenon [30] to typed formulas. We have omitted the unfolding and extension rules
that were in [30]. Thanks to Deduction modulo theory, unfolding rules (which
unfolds symbol definitions) are no longer relevant. The extension rule, which
allows users to extend the deduction system of Zenon by defining lemmas,

Deduction Modulo Theory for Automated Reasoning Tools 21

Closure Rules

⊥ �⊥�
P,¬P

��
¬Rr(τ1, . . . , τm; a, a)

�r�

¬> �¬>�
Rs(τ1, . . . , τm; a, b),¬Rs(τ1, . . . , τm; b, a)

�s�

α-Rules

¬¬A α¬¬
A

A ∧B α∧
A,B

¬(A ∨B)
α¬∨¬A,¬B

¬(A⇒ B)
α¬⇒

A,¬B

β-Rules

A ∨B
β∨

A | B

¬(A ∧B)
β¬∧¬A | ¬B

A⇒ B
β⇒¬A | B

A⇔ B
β⇔¬A,¬B | A,B

¬(A⇔ B)
β¬⇔¬A,B | A,¬B

δ-Rules

∃x : τ.A(x)
δ∃

A(ε(x : τ).A(x))
¬∀x : τ.A(x)

δ¬∀¬A(ε(x : τ).¬A(x))

γ-Rules

∀α.A(α)
γ∀MType

A(ΛType)
∀α.A(α)

γ∀instType
τ :TypeA(τ)

∀x : τ.A(x)
γ∀M

A(Xτ)
∀x : τ.A(x)

γ∀inst
t:τA(t)

¬∃x : τ.A(x)
γ¬∃M

¬A(Xτ)
¬∃x : τ.A(x)

γ¬∃inst
t:τ¬A(t)

Fig. 11 Zenon Proof Search Rules (Part 1)

is unnecessary in our context. The “�” symbol is used for branch closure,
while “|” separates two distinct nodes to be created, and Rr, Rs, Rt, and Rts
respectively denote reflexive, symmetric, transitive, and transitive-symmetric
relations (predicates), including equality in particular. γ-rules now also include
type quantification.

The proof search algorithm is an hybrid between the methods used by
free-variable tableaux and plain tableaux [63]: starting from the negation of
the goal, build a tree by applying the rules in a top-down fashion. When all
branches end with a closure rule, the tree is closed, and it is a proof of the goal.
Search is done in strict depth-first order: we close the current branch before
we start working on another branch. Moreover, we work in a non-destructive
way: extending a branch never changes the formulas elsewhere.

22 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

Relational Rules

P (τ1, . . . , τm; a1, . . . , an),¬P (τ1, . . . , τm; b1, . . . , bn)
Pred

a1 6=τ ′1 b1 | . . . | an 6=τ ′n bn

f(τ1, . . . , τm; a1, . . . , an) 6= f(τ1, . . . , τm; b1, . . . , bn)
Fun

a1 6=τ ′1 b1 | . . . | an 6=τ ′n bn

Rs(τ1, . . . , τm; a, b),¬Rs(τ1, . . . , τm; c, d)
Sym

a 6=τ d | b 6=τ c

¬Rr(τ1, . . . , τm; a, b)
¬Refl

a 6=τ b

Rt(τ1, . . . , τm; a, b),¬Rt(τ1, . . . , τm; c, d)
Trans

c 6=τ a,¬Rt(τ1, . . . , τm; c, a)
| b 6=τ d,¬Rt(τ1, . . . , τm; b, d)

Rts(τ1, . . . , τm; a, b),¬Rts(τ1, . . . , τm; c, d)
TransSym

d 6=τ a,¬Rt(τ1, . . . , τm; d, a)
| b 6=τ c,¬Rts(τ1, . . . , τm; b, c)

a =τ b,¬Rt(τ1, . . . , τm; c, d)
TransEq

c 6=τ a,¬Rt(τ1, . . . , τm; c, a)
| ¬Rt(τ1, . . . , τm; c, a),¬Rt(τ1, . . . , τm; b, d)
| b 6=τ d,¬Rt(τ1, . . . , τm; b, d)

a =τ b,¬Rts(τ1, . . . , τm; c, d)
TransEqSym

d 6=τ a,¬Rts(τ1, . . . , τm; d, a)
| ¬Rts(τ1, . . . , τm; a, d),¬Rts(τ1, . . . , τm; b, c)
| b 6=τ c,¬Rts(τ1, . . . , τm; b, c)

Fig. 12 Zenon Proof Search Rules (Part 2)

Unlike free-variable tableaux, Zenon avoids application of unifiers to the
entire proof tree with an implicit unification mechanism that appeals to γinst
rules. See Section 3.2.5 for more details. However, like free-variable tableaux,
δ-rules introduce a form of Skolem terms with a relaxed freshness constraint,
i.e. Hilbert’s ε-terms.

Given an initially well-typed formula, it should be noted that the proof
search rules generate only well-typed formulas. All these generated formulas can
be typed in the empty local context (we use Church-style ε-terms, decorating
the bound variables with their types, and the metavariables carry their types),
which explains the simplified form of the typing side conditions.

3.2.2 Ordering Rule Application

The choice of the rule to apply is critical, as it has to ensure fairness and at the
same time, it has to control the proof search space. As explained in [30] and
depicted in Figure 11, the inference rules are divided into five classes. The proof

Deduction Modulo Theory for Automated Reasoning Tools 23

search algorithm of Zenon applies the rules with the following order relation ≺,
where the relational rules of Fig. 12 are identified as β rules:

� ≺ α ≺ δ ≺ β ≺ γ

The rationale is simple. We start by trying to close a branch with a �
closure rule. If it is not possible, we pick a (yet unused) formula along the
order ≺. Preferably, we apply an α rule, which deals with non-branching logical
connectives. δ rules are also non branching and generate an ε-term. Otherwise,
we try to apply a β rule, which deals with logical connectives but generates
two branches.

If none of the previous rules was applicable, we pick one of the γ rules,
which deals with quantification and generates a new metavariable. If all quan-
tifiers have already generated a metavariable, then we try to apply another
γ instantiating rule by generating a term. See Section 3.2.5 for more details
regarding this step.

Fairness is ensured because formulas are eventually decomposed into literals
or γ formulas, since the rules α, β, δ terminate. Any formula will therefore
receive attention, except of course if a � rule applies. Unsurprisingly, the only
rules that are not terminating are the γ rules, which may generate an infinite
number of new formulas. We also ensure that any such quantified formula is
handled properly, first by generating one metavariable, which terminates, and
then by generating different term instances, potentially infinitely many.

3.2.3 Pruning

Pruning [89] is a method to reduce the size of the proof tree as well as the
proof search space. As explained in [30], when a branching node N has a closed
subtree B as one of its branches, we determine which formulas are useful in
B. If the formulas introduced by B are not useful in B, Zenon removes N and
grafts B at its place since this subtree is valid without the application of the
rule that introduced N. This locally closes the entire subtree. A formula is
said to be useful in a subtree if it is one of the formulas closing a branch,
or a formula that generated a useful formula through a rule application. An
example is provided in Section 3.2.6.

3.2.4 Type Parameters in Proof Search Rules

The application of closure and relational rules dealing with more than one
function or predicate symbol is conditioned by the value of the type parameters.
For instance, the Pred rule of Figure 12:

P (τ1, . . . , τm; a1, . . . , an),¬P (τ1, . . . , τm; b1, . . . , bn)
Pred

a1 6=τ ′1
b1 | . . . | an 6=τ ′n

bn

can be applied only if P and ¬P bear the same m first type parameters
τ1, . . . , τm. This rule generates n branches of the form ai 6=τ ′

i
bi, where τ ′i is

the type of the two terms ai and bi. The fact that these type parameters have
to be equal may be seen as a precondition to the application of this rule.

24 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

3.2.5 Dealing with Metavariables

We have introduced metavariables in Section 3.1. As explained in [30], Zenon
uses them only to find candidate instances by unification.

Term metavariables are not used as variables in Zenon as they are never
substituted. Instead, the following method is used. When we meet a universal
formula of the form ∀x : τ.A, we apply the γ∀M rule and introduce a new
metavariable Xτ , linked to this universal formula. Later, assume that we meet a
potential contradiction like Xτ 6=τ a, where a : τ is a closed term. Then, Zenon
applies the γ∀inst rule to instantiate ∀x : τ.A with a in the current branch.
If this leads to a closed subtree rooted at the γ∀inst node, pruning will then
remove the nodes between the γ∀M and γ∀inst rules.

More generally, after an application of a Pred rule, term unification is
performed explicitly in the proof tree through the relational rules of Figure 12
applied to the equality predicate and in particular the Fun rule. If unification
succeeds, the branch is closed, otherwise we use the metavariables of the atomic
equations Xτ 6=τ a as described above.

In the presence of polymorphism, type metavariables may also be introduced
by the γ∀MType and γ¬∃MType rules. Zenon’s behavior for those metavariables is
different since it would be irrelevant to look for possible contradictions of the
form ΛType 6= τ .

Instead of a contradiction, Zenon looks for potential applications of the
relational rules of Figure 12 to find type instances by unification. For example,
given a type τ : Type and a closed term a : τ , assume that, in the global
context of the current branch, there are the two formulas P (ΛType;XΛType) and
¬P (τ ; a), where ΛType is a type metavariable and XΛType a term metavariable.
We have a potential application of the Pred relational rule by replacing ΛType
with τ . We apply the rule γ∀instType to the type-quantified formula linked to the
metavariable ΛType, and instantiate it with τ in the current branch. As with
term metavariables, if this instance closes the subtree rooted at the γ∀instType

node, pruning will then remove useless nodes.
For both term and type metavariables, if the instantiations do not allow us

to close the subtree, the original formulas with metavariables are still on the
current branch. Hence, Zenon may generate as many instantiations as needed
to find potential contradictions or application of relational rules. This allows
us to avoid using iterative deepening to ensure completeness.

3.2.6 Example

As an example, assume a type τ : Type, two constants a : τ and b : τ , and
a predicate symbol P with the signature P : Πα.α × α → o. Assuming that
∀α.∀x : α.∀y : α.P (α;x, y), we aim to show that P (τ ; a, b).

The proof, before the pruning of useless formulas, is given below:

Deduction Modulo Theory for Automated Reasoning Tools 25

∀α.∀x : α.∀y : α.P (α;x, y),¬P (τ ; a, b)
γ∀MType∀x : ΛType.∀y : ΛType.P (ΛType;x, y)

γ∀M
∀y : ΛType.P (ΛType;XΛType , y)

1 γ∀M
P (ΛType;XΛType , YΛType)

2 γ∀instType∀x : τ.∀y : τ.P (τ ;x, y)
γ∀M

∀y : τ.P (τ ;Xτ , y)
3 γ∀M

P (τ ;Xτ , Yτ)
4 Pred
Xτ 6=τ a γ∀inst

∀y : τ.P (τ ; a, y)
γ∀M

P (τ ; a, Y ′τ)
Pred

a 6=τ a �r�
Y ′τ 6=τ b γ∀inst
P (τ ; a, b)

��

Yτ 6=τ b

We remark that, 1 when we introduce the formula P (ΛType;XΛType , YΛType),
we would like to apply the Pred rule with ¬P (τ ; a, b). But 2 Zenon first needs
to instantiate the formula related to the type metavariable ΛType with the type
τ . Then, 3 it generates some new (term) metavariables Xτ and Yτ with the
proper type. 4 We finally apply the Pred rule and identify the subterms of
P (τ ;Xτ , Yτ) with those of ¬P (τ ; a, b), which generates two branches. Then,
Zenon reaches a potential contradiction with the formula Xτ 6= a, thus it
instantiates the formula that introduced Xτ with a. Doing the same with Yτ ,
Zenon can finally close the local branch.

Thanks to the pruning of useless formulas, which includes the formulas
with metavariables, the open right-hand side branch is erased, leading to the
following proof tree:

∀α.∀x : α.∀y : α.P (α;x, y),¬P (τ ; a, b)
γ∀instType∀x : τ.∀y : τ.P (τ ;x, y)

γ∀inst
∀y : τ.P (τ ; a, y)

γ∀inst
P (τ ; a, b)

��

3.3 Extension of Zenon to Deduction Modulo Theory

3.3.1 Conversion Rule

Given a global typing context ΓG and a rewrite system RE well-formed in ΓG,
extending Zenon to Deduction modulo theory then consists in adding to the
proof search rules of Figures 11 and 12 the following conversion rule:

A conv, A ≡ B
B

26 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

Such a rule trivially induces an infinite proof search space, but the proof
search algorithm only considers confluent and terminating rewrite systems.
This way, conversion is only used to produce normalized formulas during proof
search. This step of normalization is performed after the application of each
inference rule to all the formulas newly generated. The normalization procedure
works as follows:

1. Rewrite only the literals, i.e. atomic formulas or their negation;
2. Normalize with respect to term rewrite rules;
3. Apply one step of proposition rewriting;
4. If the formula is still unchanged, quit; otherwise go back to 1.

This algorithm rewrites an atomic formula until we have either a normal
form with respect to the rewrite system, or a non-atomic formula.

The metavariable instantiation mechanism of Section 3.2.5 also needs to
be adapted: on a branch, we look for formulas A and B such that A ≡ A′,
B ≡ ¬B′, and there exist a type substitution ρ and a term substitution σ such
that σ(ρ(A′)) ≡t σ(ρ(B′)), that is to say we look for convertibility modulo
term rewriting and equational reasoning of the candidate instances of A′ and
B′, while we additionally allow propositional rewriting on A and B to get A′
and B′. σ and ρ are then used to perform instantiation as in Section 3.2.5.

To get a complete algorithm (see Section 3.4), we must also extend metavari-
able instantiation to the propositional narrowing of Section 2.4, extended to
polymorphism: we look for a formula A, a type substitution ρ, and a term
substitution σ, such that A ≡ A′, and there exist A′|ω and a rule l →ΓL r

in R such that σ(ρ(A′|ω)) ≡t σ(ρ(l)). Instantiation is then performed as in
Section 3.2.5.

In what follows, the extension of Zenon to Deduction modulo theory will
be called Zenon Modulo.

3.3.2 Example

Applying Deduction modulo theory to the example of Section 3.2.6 leads to the
transformation of the axiom ∀α.∀x : α.∀y : α.P (α;x, y) into the (proposition)
rewrite rule P (α;x, y)→(α:Type,x:α,y:α) >.

The proof produced by Zenon Modulo consists of one application of the
conversion rule, followed by one application of a closure rule:

¬P (τ ; a, b)
conv, P (τ ; a, b) ≡ >¬> ¬>�

It should be noted that the main benefit of Deduction modulo theory
is to avoid proof search within sets of axioms. It strongly reduces the num-
ber of metavariables generated by Zenon Modulo, therefore the number of
instantiations performed during proof search.

Deduction Modulo Theory for Automated Reasoning Tools 27

3.3.3 Generation of the Rewrite System

Turning axioms into rewrite rules is a key point in Deduction modulo theory.
In Zenon Modulo, we propose two solutions to do so.

When dealing with a specific theory, users may define manually which
axiom could be turned into a rewrite rule, in the sense that it is done outside
Zenon Modulo. To do so, it is possible to tag axioms in input files using the
special keyword “rewrite”.

The second solution to turn axioms into rewrite rules is to rely on a heuristic.
The main advantage of the heuristic is to be fully automatic. But it may also
generate some inappropriate rewrite rules, leading to a rewrite system that
does not enjoy expected properties, such as confluence and termination, and
that does not allow us to have an efficient proof search.

We present, in the following, a heuristic, implemented in Zenon Modulo,
which allows us to generate both term and proposition rewrite rules.

The main idea is to transform, into term rewrite rules, axioms of the form
∀~α.∀~x.t = u, where t is a term that is not a variable and u is any term, and
to transform, into proposition rewrite rules, axioms of the form ∀~α.∀~x.P ⇔ A,
where P is a predicate symbol and A is any formula.

However, we have to be more restrictive to avoid catching some particular
kind of axioms, like those expressing commutativity properties of symbols,
which would lead to immediate non-termination.

In the following, P denotes an atomic formula that is not an equality, A an
arbitrary formula, t a term that is not a variable, and u an arbitrary term. In
addition, we denote by FV(A) and FV(t) the union of the free term and type
variables of A and t respectively.

For proposition rewrite rules, we have:

∀~α.∀~x.P becomes P → >
∀~α.∀~x.¬P becomes P → ⊥
∀~α.∀~x.P ⇔ A becomes P → A

The last rule is under the proviso that FV(A) ⊆ FV(P) ⊆ ~α ∪ ~x and P is
not unifiable with A or any subformula of A.

For term rewrite rules, we have:

∀~α.∀~x.t = u becomes t→ u

provided that FV(u) ⊆ FV(t) ⊆ ~α ∪ ~x and t is not unifiable with u or any
subterm of u.

Verifying that the left-hand side of a rewrite rule is not unifiable with any
subformula/subterm of the right-hand side allows us to eliminate some trivial
cases of non-termination. Unfortunately, it does not guarantee that our final
rewrite system is terminating since we do not test this criterion for all the
rewrite rules. But this heuristic is terminating and rather efficient in practice,
thus we consider it as a good compromise.

28 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

3.4 Soundness and Completeness

We do not have formally defined the notion of model for Poly-FOL modulo theory,
so we cannot claim a soundness theorem. The soundness of Zenon Modulo is
however clear, potential implementation bugs apart (addressed in Section 3.5).

Inspecting the rules of Figures 11 and 12, and the additional conversion
rules of Zenon Modulo should be convincing enough. Actually, all of them,
interpreted as non-polymorphic rules, are sound with respect to the first-order
models of Definition 9, in the sense of Theorem 2. With a suitable extension of
Definition 9 to Poly-FOL, we cannot see why soundness would not hold.

The question of the completeness of Zenon Modulo is more delicate. It relies
at the first place on the completeness of Zenon itself, and depends on both the
rewrite system and the implementation choices of Zenon Modulo.

The tableau calculus underlying non-polymorphic Zenon is straightforwardly
complete. It is especially clear for the rules of Figure 11, if we forget for a
moment the relational rules (including equality) of Figure 12. We have a
standard tableau calculus, with unrestricted instantiation rules for quantifiers.
Any off-the-shelf textbook completeness proof can be used [63,86]. Note that
rules introducing metavariables are superfluous to show completeness.

We are unaware of any concrete completeness proof for the second set of
relational rules of Figure 12, should it be semantic, with respect to Boolean
first-order models extended to these relations, or syntactic, for instance with
respect to a sequent calculus enjoying a cut rule and a cut-admissibility theorem.
We however conjecture that an extension of the completeness proofs of the
previous paragraph is easily achievable.

On the other hand, completeness of the proof search algorithm of Zenon, as
presented in Section 3.2, is harder. Some of the authors made a few attempts
several years ago and did not managed to come up with a complete proof. The
understanding of Zenon’s instantiation strategy, described in Section 3.2.5,
which relies on metavariables, is a key factor, since it allows us to parsimoniously
use instantiation rules. The less we instantiate, the harder it is to be complete.
As far as we know, no completeness proof of this particular algorithm, even in
simpler first-order cases, has been given.

Practical performances and pen-and-paper tests tend to show that Zenon’s
algorithm behave remarkably well and does not expose any weakness. For the
rest of the section, we therefore make the assumption that this part of the
algorithm is complete.

The rewrite system raises another issue, as underlined in Section 2.8. Some
rewrite systems do not enjoy cut-free completeness, which easily boils down
to non-completeness of the tableau calculus of Zenon Modulo : it corresponds
to a sequent calculus without the cut rule. For the proof search algorithm,
and even the tableau calculus, to be complete, we therefore also have to
assume cut admissibility of the rewrite system, or to use the cut-admissibility
results/criteria mentioned in Section 2.8.

Finally, a last hurdle for the completeness of Zenon Modulo is narrowing, see
Definition 5 and Section 3.3.1. It has not been integrated to the current version

Deduction Modulo Theory for Automated Reasoning Tools 29

of Zenon Modulo. As seen in Section 2.4, the absence of narrowing on quantified
variables or, in our case, on metavariables can preclude the application of some
rewrite rules, and then prevent the completion of some proofs.

Early experiments on naively adding narrowing to Zenon Modulo showed that
the unceasing unification and instantiation attempts of the rewrite strategy, and
the spurious addition of instantiated formulas were degrading the performance
of Zenon Modulo by an order of magnitude with no clear improvement in newly
proved statements (see Section 5 for further discussions). Better narrowing and
instantiation heuristics would be necessary and we left this delicate point for
further work.

3.5 Proof Certification Using Dedukti

The quest for an efficient ATP is error-prone. This is why, as described in [55],
Zenon Modulo enjoys a backend that outputs certificates for Dedukti [28], a
universal proof checker for the λΠ-calculus modulo theory. Since it also relies
on Deduction modulo theory, Dedukti natively deals with rewriting and is well-
suited to verify the proofs of Zenon Modulo. In particular, we do not record the
rewriting steps in the proofs (these steps are implicitly done by Dedukti), which
makes these proofs quite compact. The logic of Dedukti is constructive, and calls
for a translation initially based on an optimized double-negation translation
(see [55]). This translation has been replaced by a more syntactical one using
excluded middle explicitly (see [48]), which is more efficient in practice.

3.6 Experimental Results

3.6.1 Motivations

The development of Zenon Modulo was driven by its application to the B
method [1], as part of the industrial research project BWare [56,107]. The
BWare project aims to improve the automated verification of Proof Obligations
(POs for short) coming from the modeling of applications using the B method,
i.e. logical formulas expressed in a particular set theory. The main distinctive
feature of the B set theory compared to usual set theories, like Zermelo-Frankel’s
set theory, is the addition of typing constraints to expressions. Since the type
system of the B method can be interpreted as a polymorphic type system [69],
an encoding of the B set theory in an ML-like language called WhyML has
been proposed in BWare. WhyML is the native language of Why3 [26], a
platform dedicated to program verification and used in BWare to manage
several automated reasoning tools like Zenon Modulo in particular.

3.6.2 Experimental Protocol

To assess the several extensions of Zenon, we use a benchmark of POs provided
by the industrial partners of the BWare project. This benchmark comes from

30 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

4 anonymized industrial projects that were selected by the industrial partners
for the representativeness of their POs. The POs are not necessarily tricky
mathematical properties, their difficulty comes from their size, the large context
provided, or the number of quantified variables (the mean size of the statements
of these POs in TFF1 format is 515 KiB, with a maximum of 2,690 KiB). To run
the tests, we rely on the BWare verification platform, which we outline briefly.
The POs are initially produced by Atelier B [50] (an industrial tool supporting
the B method). They are then translated into Why3 files [26] using a Why3
encoding of the B set theory [82]. Next, from these files, the Why3 platform
produces (through appropriate drivers) the POs for the automated deduction
tools. Why3’s B set theory is interpreted as a rewrite system (see [45]) for
tools compliant with Deduction modulo theory, otherwise as axioms. As this
theory appeals to polymorphism, the output format may be either the TFF1
format [23] of the TPTP community used for the first-order polymorphic ATPs
(this translation is straightforward as there are very few differences between the
polymorphic input language of Why3 and TFF1), or the regular FOF format
with an encoding of the polymorphic layer [22] used for the other first-order
ATPs. SMT solvers are also considered and the SMT-LIB format is used with
the same encoding for polymorphism, except for Alt-Ergo, which features a
native format for polymorphism, and which was also part of the BWare project
(see below for more details about the tools considered in the BWare project).

3.6.3 Experimental Results

The benchmark of BWare consists of 12,876 POs2, and the experiment was run
on an Intel Xeon E5-2660 v2 2.20 GHz computer, with a timeout of 120 s and a
memory limit of 1 GiB. The results are summarized in Table 1. In these results,
the first table focuses on the results of five different versions of Zenon (using
several extensions), mainly based on Zenon 0.8.0 and compared to the main
prover (mp) of Atelier B 4.0. The second table compares the tools considered in
BWare, i.e. mp, Zenon Modulo (i.e. Zenon using all the extensions introduced
in the first table), iProverModulo v0.7+0.2 (an extension of iProver v0.7 to
Deduction modulo theory; see Section 4 for more details), and Alt-Ergo 0.99.1,
to a representative panel of first-order ATPs, such as Vampire 2.6 and E 1.8, and
SMT solvers, like CVC4 1.4 and Z3 4.3.2. Among these tools, only Zenon with
Deduction modulo theory (i.e. versions tagged with “M”) and iProverModulo
implement Deduction modulo theory, while only Zenon with types (i.e. versions
tagged with “T”) and Alt-Ergo rely on polymorphic types.

For both tables of Table 1, we provide the number of proved POs, the
corresponding rate, and the cumulative time for the successfully proved POs
(not measured for mp, since it is not possible to split the timeout by PO). The
“Unique” line refers to the number of POs that are only proved by a given
prover. In the second table, “Uniq. (1)” ranges over the BWare tools (i.e. the
tools considered in the BWare project), while “Uniq. (2)” considers all the tools.

2 This benchmark is publicly available at: http://bware.lri.fr/.

http://bware.lri.fr/

Deduction Modulo Theory for Automated Reasoning Tools 31

All Tools (12,738/98.9%)
#POs:
12,876 mp Zenon Zenon

(T)
Zenon
(T+A)

Zenon
(T+M)

Zenon
(T+M+A)

Proofs 10,995 337 6,251 7,406 10,340 12,281
Rate 85.4% 2.6% 48.5% 57.5% 80.3% 95.4%
Time (s) - 2,316 14,452 18,514 31,665 31,689
Unique 329 0 0 0 34 946

All Tools (12,797/99.4%)
BWare Tools (12,772/99.2%) Other Tools

#POs:
12,876 mp Zenon

Modulo
iProver
Modulo Alt-Ergo Vampire E CVC4 Z3

Proofs 10,995 12,281 3,695 12,620 10,154 7,919 12,173 10,880
Rate 85.4% 95.4% 28.7% 98.0% 78.9% 61.2% 94.5% 84.5%
Time (s) - 31,689 20,156 7,129 118,541 36,969 8,378 3,404
Uniq. (1) 109 4 0 65
Uniq. (2) 84 0 0 13 0 0 1 12

T ≡ with types M ≡ with Deduction modulo theory A ≡ with arithmetic
Zenon Modulo ≡ Zenon (T+M+A)

Table 1 Experimental Results over the BWare Benchmark

Coverage is given on top of tables. In the second table, we distinguish the
coverage for the BWare tools from the coverage for all the tools.

In the first table of Table 1, in addition to the regular version of Zenon,
we present the extensions with (polymorphic) types (tagged with “T”), with
types and arithmetic (tagged with “T” and “A”), with types and Deduction
modulo theory (tagged with “T” and “M”), and with types, Deduction modulo
theory, and arithmetic (tagged with “T”, “M”, and “A”), which is currently
the regular version of Zenon Modulo3. The arithmetic extension [44] handles
linear arithmetic formulas, and relies on the simplex algorithm to compute
solutions for systems over rationals, as well as on the branch and bound method
to deal with integer systems [49]. As can be observed, the more extensions we
plug, the more POs we prove. The most significant gain is provided by the
extension with types, where we get an increase of about 1755% compared to
Zenon. Plugging Deduction modulo theory gives an additional increase of 65%.
Finally, connecting arithmetic on top allows us to prove 20% more POs, and
to improve by 10 percentage points on mp.

In the second table of Table 1, we observe that Zenon with types and
Deduction modulo theory but without arithmetic (i.e. the version tagged with
“T” and “M”) obtains better results than the first-order ATPs Vampire and E
with respect to the number of proved POs. Vampire remains close to Zenon
(10,154 proofs compared to 10,340 proofs for Zenon), but Zenon appears to be
about 4 times faster than Vampire over all the proved POs (with a cumulative
time of 31,665 s compared to 118,541 s for Vampire). Similarly, Zenon Modulo (i.e.

3 Available at: http://zenon.gforge.inria.fr/.

http://zenon.gforge.inria.fr/

32 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

the version including all the extensions) proves more POs than the SMT solvers
CVC4 and Z3, except Alt-Ergo. However, it should be noted that CVC4 is close
to Zenon Modulo (12,173 proofs compared to 12,281 proofs for Zenon Modulo),
and has a significant lower cumulative time (8,378 s compared to 31,689 s for
Zenon Modulo). The low results obtained by iProverModulo (less than 30% of
proved POs) can be explained by the encoding of polymorphism (as described
in Section 3.6.2), which hampers the analysis of the theory and the generation
of a rewrite system similar to the one found by Zenon Modulo (which offers
full support for polymorphism).

The Dedukti backend mentioned in Section 3.5 deals with all the proofs
produced by Zenon Modulo that do not involve arithmetic (i.e. 10,340 proofs),
and all these proofs have been verified and therefore approved by Dedukti.

4 The iProverModulo Automated Theorem Prover

In this section, we present the iProverModulo ATP, which is an extension of
the iProver resolution- and instantiation-based ATP [78] to include Deduction
modulo theory.

4.1 Basic Definitions and Notations

As usual, literals are atomic propositions or their negations; clauses are sets
of literals. A clause C = {L1, . . . , Ln} can be identified with the formula
pCq = ∀~x. L1 ∨ · · · ∨ Ln, where ~x = FV(L1, . . . , Ln). Such a formula is said
to be clausal. It is folklore that any first-order formula A can be transformed
into an equi-satisfiable formula that is a conjunction of clausal formulas. We
define the clausal normal form of A, denoted by C̀ (A), as the set of the clauses
corresponding to these clausal formulas.

4.2 Resolution Modulo Theory

One of the original motivations of Deduction modulo theory was to design
automated theorem proving methods modulo theories. The introductory paper
on Deduction modulo theory [60] therefore already presents a resolution method
called ENAR, which stands for Extended Narrowing And Resolution. The main
addition of ENAR to ordinary resolution is the extended narrowing rule, which
deals with proposition rewrite rules:

L ∨ CExt. Narr. L σ A, D ∈ C̀ (A)
σ(D ∨ C)

where is the narrowing relation presented in Definition 5.
The drawback of this rule is that C̀ (A), the clausal normal form of A, has to

be computed dynamically each time the rule is applied. To avoid this, Dowek [59]

Deduction Modulo Theory for Automated Reasoning Tools 33

refined ENAR into Polarized Resolution Modulo Theory (PRMT). In PRMT,
proposition rewrite rules are polarized as explained in Section 2.5: they are
tagged with a polarity + or −, and positive rules can only be applied at positive
positions whereas negative rules can only be applied at negative positions. In
addition, these polarized rewrite rules are assumed to be clausal: negative rules
are of the form P →− C and positive rules are of the form P →+ ¬C, where C
is clausal. Consequently, in a refutational context, narrowing a clausal formula
gives a formula that is already clausal, and the extended narrowing rule can
be reduced to the two following instances:

P ∨DExt. Narr.− σ = mgu(P,Q), Q→− C ∈ R
σ(C ∨D)

¬P ∨DExt. Narr.+ σ = mgu(P,Q), Q→+ ¬C ∈ R
σ(C ∨D)

where P and Q are assumed to be atomic.

Remark 1 In the original presentation of ENAR, equational axioms and term
rewrite rules are handled using a constraint system, as in equational resolution
of Plotkin [91]. However, because of the difficulty to implement them while
avoiding clauses with unsatisfiable constraints, no first-order theorem prover
uses such constraints as far as the authors know. We therefore preferred a
presentation without equational axioms, and where term rewrite rules are
handled as proposition rewrite rules. In this setting, we also have an extended
narrowing rule for term rewrite rules:

L ∨ CExt. Narr.t L σ L′ by a term rewrite rule
σ(L′ ∨ C)

To reduce the proof search space of PRMT, Burel [35] refined it with
ordering constraints, as in ordered resolution. Given an ordering �, which is
well-founded and stable by substitution, the rule Ext. Narr.− is given the extra
condition that P must be maximal in P ∨ C, and Ext. Narr.+ is given the
extra condition that ¬Q must be maximal in ¬Q ∨D. Note that the rewriting
relation does not need to be compatible with the ordering �. The whole calculus
is presented in Figure 13. It was proved that Ordered Polarized Resolution
Modulo Theory (OPRMT) is complete exactly in the same cases when ENAR
and PRMT are. This depends on the rewrite system and it happens precisely
when the cut rule is admissible in the sequent calculus modulo theory. See
Section 2.8 for a discussion about cut-free completeness, and the end of Section
2.5 for the particular case of polarized Deduction modulo theory.

Theorem 4 ([35, Theorem 1]) Given a set of clauses Γ , the sequent pΓq `
has a proof without cut in G3≡+ if and only if the empty clause can be derived
from Γ in OPRMT.

Note that OPRMT can be complete even when the rewrite system is neither
confluent nor terminating, since rewriting (or more precisely narrowing) is

34 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

P ∨ C ¬Q ∨D
Resolution (a),(b),(c)

σ(C ∨D)
L ∨K ∨ CFactoring (d)
σ(L ∨ C)

P ∨ CExt. Narr.− (a),(b), Q→− D
σ(D ∨ C)

¬Q ∨D
Ext. Narr.+ (a),(c), P →+ ¬C

σ(C ∨D)

L ∨ CExt. Narr.t
L maximal in L ∨ C,
L σ L′ by a term rewrite ruleσ(L′ ∨ C)

(a) σ = mgu(P,Q) (b) P maximal in P ∨ C (c) ¬Q maximal in ¬Q ∨D
(d) L and K maximal in L ∨K ∨ C, σ = mgu(L,K)

Fig. 13 Inference Rules of Ordered Polarized Resolution Modulo Theory

applied step by step, and for all rewrite rules in parallel. For instance, modulo
the rewrite system consisting of two polarized rules A→+ ¬¬A and A→+ ¬B,
OPRMT is complete. However, in practice, provided the term rewrite system
is terminating and confluent, clauses can be normalized using this system, thus
avoiding many applications of the extended narrowing rule (see Section 4.4).

4.3 Deviating Discount Loop to Simulate Resolution Modulo Theory

Implementing OPRMT relies on the following observation by Dowek [59]:
applying extended narrowing on a clause P ∨ C with rewrite rule Q →− D
produces the same clause as resolving it with the clause ¬Q ∨D. Thus, the
so-called one-way clause ¬Q ∨D can be associated with any negative rewrite
rule Q→− D, and the one-way clause P ∨C can be associated with any positive
rewrite rule P →+ ¬C. If, instead of using the extended narrowing rule with
polarized rewrite rules, we want to use resolution with the corresponding
one-way clauses, we have to take the following two conditions into account:

– Since only the left-hand side of a rewrite rule can be used for narrowing,
resolution can only be applied on the underlined literal of a one-way clause;

– Since it is not possible in PRMT to narrow a rewrite rule with another one,
it is prohibited to apply resolution on two one-way clauses.

This is reminiscent of the set-of-support strategy for resolution [112], where
the set of clauses is split into two parts : the theory and the set of support.
Resolution must be applied to at least one clause of the set of support, and
generated clauses are added to the set of support. Here, one-way clauses
correspond to those that are in the theory part, whereas ordinary clauses are
put in the set of support. The difference here is that the search space is even
more restricted since resolution can only be applied on the underlined literals.

This relation with the set-of-support strategy can be exploited to embed
OPRMT into a resolution-based prover using the given-clause algorithm, or
one of its refinements, namely the Otter loop or the Discount loop (see [111] for
an elaborate discussion of proof procedures for resolution). In Figure 14, we

Deduction Modulo Theory for Automated Reasoning Tools 35

Unprocessed := { Input clauses }
Processed := ∅
while Unprocessed 6= ∅

given := pick_one(Unprocessed)
Unprocessed := Unprocessed \ { given }
if given = ut // the empty clause

return Unsatisfiable
Processed := Processed ∪ { given }
for p in Processed

Unprocessed := Unprocessed ∪ inferences(given, p)
return Satisfiable

Fig. 14 Given-Clause Algorithm

recall the given clause algorithm. It proceeds by working on two separated sets
of clauses: the set of unprocessed clauses and the set of processed ones. The key
ingredient of the algorithm is to maintain the invariant that all non-redundant
inferences between two clauses in the processed set have been applied. The
resulting clause can be either in the unprocessed set or in the processed set,
as long as it is not redundant. inferences(c,d) returns the set of clauses
generated by applying all the inference rules of the calculus between the clauses
c and d. Modifying this algorithm to introduce one-way clauses is relatively
easy, since it only consists in placing the one-way clauses in the processed set
from the beginning. That way, we ensure that no resolution will be performed
on two of them. We also need to bypass the selection mechanism of the prover
to make it select the underlined literal in the one-way clauses. The Otter and
Discount loop differs from the given-clause algorithm by adding the possibility
to simplify respectively all clauses or processed clauses. This does not affect
how OPRMT can be embedded in it.

iProver is an ATP that relies on two calculi: ordered resolution on one
hand, and instantiation-generation (Inst-Gen) on the other hand. Using the
ideas developed above, we embedded OPRMT in the resolution part of iProver,
which is based on an implementation of the Discount loop. It remained to
implement an extended narrowing rule for the term rewrite rules. We performed
this by traversing each term of the given clause to find potential positions
where narrowing can occur. To reduce the number of unification attempts, the
discrimination tree structure already implemented in iProver was reused to
make an index of the term rewrite rules.

4.4 Efficient Normalization via Compilation of Rewrite Rules

Normalizing the clauses with regards to the rewrite system R is not enough to
be complete. We need narrowing to instantiate clauses before rewriting them.
However, provided the term rewrite system is confluent and terminating, it is
safe to simplify a clause by replacing it with its normal form with respect to
the term rewrite system, as given by the following simplification rule:

36 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

CDemodulation if C →∗ D by the term rewrite system
D

Using this simplification rule avoids repeatedly applying Ext.Narr.t to rewrite
C into D, therefore producing less clauses.

We can think of several approaches to implement this normalization:
dtree Thanks to the implementation of Ext.Narr.t, there is already a data

structure that helps in retrieving rewrite rules whose left-hand side can be
unified with some term. Since pattern matching is stronger than unification
(if a term matches a pattern, then the term and the pattern can be unified),
the same structure can be used to get candidates for matching. A tree
traversal of the term has to be performed to search for matching candidates.

interp As iProver is written in OCaml, rewrite rules can be translated into
OCaml closures (i.e. functions) performing the pattern matching. By struc-
tural induction on the left-hand side of the rule, we can build a function
that matches its arguments with respect to the left-hand side and returns a
substitution as follows:
let rec term_to_subst = function
| Fun(f , f_args , _) → (function

Fun(g , g_args , _) when f = g →
L i s t . f o l d_ l e f t 2
(fun sub t1 t2 → merge_subst (term_to_subst t1 t2) sub)
(Subst . crea t e ()) f_args g_args

| _→ raise No_match)
| Var (var ,_) →

let sub = Subst . crea t e () in
fun t → Subst . add var t sub

If the function is successful, the returned substitution is applied to the right
hand side. Otherwise, we try another rewrite rule. If no rewrite rule can be
applied at that position, we try the same method below in the term.

plugin The rewrite system is translated into an actual OCaml program that
is compiled and linked to the iProverModulo executable using the plugin
feature offered by the OCaml compiler (dynamic linking). For instance, the
rules f(X, g(X)) → h(X) and f(h(X), Y) → Y are translated into the
following code:
let match_term = function
| Fun(" f " , [x0 ; Fun(" g " , [x1])]) when x0 = x1 → Fun("h " , [x0])
| Fun(" f " , [Fun("h " , [x0]) ; y0]) → y0
| _→ raise No_match

This translation is fully automated. Note that there is no need to implement
an efficient pattern-matching algorithm, since it is that of OCaml that will
be used.
In [37], we compare these different methods. It turns out that using the

plugin method adds an overhead of approximately 0.07s, corresponding to the
time needed to write the OCaml file, invoke the OCaml compiler on it, and load
the resulting plugin. However, this overhead is largely outweighed by the gain
in normalization time that it produces, in particular on problems involving
heavy computations.

Deduction Modulo Theory for Automated Reasoning Tools 37

Axioms give rewrite rules
∀~x. t = u t→ u provided FV (u) ⊆ FV (t)
∀~x. P ⇒ A P →− ∀~y. C for all C ∈ C̀ (A), with ~y = FV (C) \ FV (P)
∀~x. A⇒ P P →+ ¬∀~y. C for all C ∈ C̀ (¬A), with ~y = FV (C) \ FV (P)
∀~x. P ⇔ A

∀~x. A⇔ P the same as those of ∀~x. P ⇒ A and ∀~x. A⇒ P

∀~x. ¬P ⇒ A P →+ ¬∀~y. C for all C ∈ C̀ (A), with ~y = FV (C) \ FV (P)
∀~x. A⇒ ¬P P →− ∀~y. C for all C ∈ C̀ (¬A), with ~y = FV (C) \ FV (P)
∀~x. ¬P ⇔ A

∀~x. A⇔ ¬P the same as those of ∀~x. ¬P ⇒ A and ∀~x. A⇒ ¬P
∀~x. P P →+ ¬⊥
∀~x. ¬P P →− ⊥
∀~x. A ∧B the same as those of ∀~x. A and ∀~x. B

Table 2 Transformation Rules of the Equiv Heuristic

4.5 Orienting Axioms into Rewrite Rules

As in Section 3.3.3 for Zenon Modulo, we are confronted with the problem of
turning a theory presented by axioms into a rewrite system, with the extra
condition that we need a polarized and clausal rewrite system. We can use the
same kind of heuristics that we used for Zenon Modulo, but we can also design
techniques that are proved to be complete, in the sense that the resulting rewrite
system enjoys the cut-admissibility property. We devised three strategies to
orient axioms into rewrite rules, which are named Equiv, ClausalAll, and Sat,
and which are described below.

Equiv: This is a heuristic based on the shape of the formula, as in Section 3.3.3.
The transformations are summarized in Table 2. Using polarized Deduction
modulo theory allows us to cover a few more cases than Zenon Modulo, in
particular axioms involving implications.

Example 1 If we apply the Equiv heuristic on the inclusion axiom in set theory
(see Section 2.1)

∀A,B. A ⊆ B ⇔ ∀x. x ∈ A⇒ x ∈ B

according to the fourth line of Table 2, we have to compute the clausal normal
form of ∀x. x ∈ A⇒ x ∈ B, which contains only the clause ¬(X ∈ A)∨X ∈ B,
and the clausal normal form of ¬(∀x. x ∈ A ⇒ x ∈ B), which contains
two singleton clauses diff(A,B) ∈ A and ¬(diff(A,B) ∈ B), where diff is a
Skolem function symbol introduced to eliminate the negated universal quantifier.
diff(A,B) can be seen as a counter-example of A ⊆ B if it exists.

38 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

We thus obtain the following rewrite system:

A ⊆ B →− ∀x. ¬x ∈ A ∨ x ∈ B
A ⊆ B →+ ¬diff(A,B) ∈ A
A ⊆ B →+ ¬¬diff(A,B) ∈ B

Note that the double negation in the last rewrite rule has been kept to let
the rewrite rules correspond to the associated one-way clauses (see Section 4.3):

¬(A ⊆ B) ∨ ¬(X ∈ A) ∨X ∈ B
A ⊆ B ∨ diff(A,B) ∈ A

A ⊆ B ∨ ¬(diff(A,B) ∈ B)

ClausalAll: We rely on the completeness of the set-of-support strategy to define
a complete heuristic to orient axioms. We assume that the theory is presented
by means of a set of clauses. Otherwise, it has to be transformed into clausal
normal form using standard techniques.

Definition 11 Given a set of clauses Γ , we define the polarized rewrite system
RΓ consisting of, for each clause C in Γ , for each literal L in C:

– if L = P is positive, a positive rewrite rule P →+ ¬∀~x. L1 ∨ · · · ∨ Lm,
where ~x are the free variables of C that are not free in P , and L1, . . . , Lm
are the literals of C different from P ;

– if L = ¬P is negative, a negative rewrite rule P →− ∀~x. L1 ∨ · · · ∨ Lm,
where ~x are the free variables of C that are not free in P , and L1, . . . , Lm
are the literals of C different from ¬P .

Example 2 Let Γ be the set of clauses corresponding to the above inclusion
axiom in set theory. It is (unsurprisingly) identical to the three one-way clauses
above, besides the lack of literal selection.

¬(A ⊆ B) ∨ ¬(X ∈ A) ∨X ∈ B
A ⊆ B ∨ diff(A,B) ∈ A

A ⊆ B ∨ ¬(diff(A,B) ∈ B)

Then RΓ is:

A ⊆ B →− ∀x. ¬x ∈ A ∨ x ∈ B
X ∈ A→− ∀b. ¬A ⊆ b ∨X ∈ b
X ∈ B →+ ¬∀a. ¬a ⊆ B ∨X ∈ a
A ⊆ B →+ ¬diff(A,B) ∈ A

diff(A,B) ∈ A→+ ¬A ⊆ B
A ⊆ B →+ ¬¬diff(A,B) ∈ B

diff(A,B) ∈ B →− A ⊆ B

Deduction Modulo Theory for Automated Reasoning Tools 39

Remark 2 The number of rewrite rules in RΓ is equal to the number of literal
occurrences in Γ .

We can prove that the rewrite systems obtained from axioms as shown
above enjoy cut admissibility.

Theorem 5 ([36, Theorem 14]) The consistency of a finite set of clauses Γ
implies the admissibility of the cut rule in the polarized sequent calculus modulo
the rewrite system RΓ .

Sat: To reduce the number of rules generated by the ClausalAll technique,
it is possible to associate a polarized rewrite system with a set of clauses for
ordered resolution with selection [7] by considering as left-hand sides only the
literals that are selected in a clause. Thus, we would not produce a rule for
each literal but only for those that are in the selected literals of the clause or
maximal for the chosen ordering if no literal is selected.

Example 3 If we still consider the example of inclusion, with an ordering such
that literals with ⊆ are greater than literals with ∈. The resulting rewrite
system is reduced to:

A ⊆ B →− ∀x. ¬x ∈ A ∨ x ∈ B
A ⊆ B →+ ¬diff(A,B) ∈ A
A ⊆ B →+ ¬¬diff(A,B) ∈ B

However, ordered resolution with selection appears to be not compatible
with the set-of-support strategy, in the sense that their combination jeopardizes
completeness. In fact, the rewrite system corresponding to the clauses may
not admit cut (although it is the case in the example above). Nevertheless, a
sufficient condition to ensure completeness is the saturation of the set of clauses
used as a complement of the set of support (i.e. the theory): the clauses that
can be obtained by applying the resolution inference rules within it must either
already belong to the theory or be redundant (i.e. they must be semantically
implied by smaller clauses).

Theorem 6 ([39, Theorem 7]) If a finite set of clauses Γ is saturated with
respect to ordered resolution with selection, then the cut rule is admissible in
the polarized sequent calculus modulo the rewrite system RΓ restricted to the
rules whose left-hand side is selected (or maximal if none is selected).

Note that saturation is a sufficient, but not necessary condition, to ensure
cut admissibility. For instance, the example above is not saturated if we choose
an ordering that makes the left-hand sides of the clauses maximal or selected,
although cut admissibility holds.

Since saturation implies satisfiability of the set of clauses (if it does not
contain the empty clause), which is undecidable, saturating a set of clauses
may not terminate. However, it can be semi-automated. Using the SPASS ATP

40 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

on the example above (with precedence ⊆ > ∈ > diff, and ⊆ and ∈ dominant
predicates), saturation generates two new clauses:

¬X ∈ A ∨ diff(A,B) ∈ A ∨X ∈ B
¬diff(A,B) ∈ B ∨ ¬X ∈ A ∨X ∈ B

The following rewrite system therefore admits cut:

A ⊆ B →− ∀x. ¬x ∈ A ∨ x ∈ B
A ⊆ B →+ ¬diff(A,B) ∈ A
A ⊆ B →+ ¬¬diff(A,B) ∈ B
X ∈ A→− ∀x. diff(A,B) ∈ A ∨ x ∈ B

diff(A,B) ∈ B →− ∀x. ¬x ∈ A ∨ x ∈ B

These different heuristics have been implemented in a tool called autotheo4.
This tool proposes the following strategies to orient a set of axioms:

ClausalAll: The set of axioms is put in clausal normal form, and is trans-
formed into a rewrite system as described above. The clausal normal form
transformation is performed using E [98].

Sat: The set of axioms is saturated using E, and is transformed into a rewrite
system restricted to the selected literals. The saturation may not terminate,
and this technique therefore does not always succeed.

Equiv(X): In this technique, we use the heuristic based on the form of the
axiom. If the axiom does not have an appropriate form, we apply the
strategy X (in parameter) on it.

Presat(X): Since saturation may not terminate, we can decide to stop it
after a certain amount of clauses has been generated. In this technique, we
saturate the set of axioms using E until N clauses have been processed.
These processed clauses are transformed into a rewrite system restricted to
the selected literals as in Sat. The unprocessed clauses generated during
the saturation are transformed using the X strategy (in parameter).

Id: The axiom is not transformed into a rewrite rule and it is kept as it is.
Nil: The axiom is dropped. This strategy is mainly useful when used in

combination with Presat.

4.6 Dedukti Output

As with Zenon Modulo, iProverModulo is able to output formal proof terms
that can be checked by Dedukti, a proof-checker based on the λΠ-calculus
modulo theory. Only the resolution proofs can be output, which means that
the transformation to clausal normal form and the use of the Inst-Gen calculus
of iProver are currently not taken into account. The general setting to express

4 Available at:
http://www.ensiie.fr/~guillaume.burel/blackandwhite_autotheo.html.en.

http://www.ensiie.fr/~guillaume.burel/blackandwhite_autotheo.html.en

Deduction Modulo Theory for Automated Reasoning Tools 41

resolution and superposition proofs in Dedukti is given in [38], and its application
to iProverModulo is sketched in [6] (Section 4.4).

iProverModulo can be used to produce Dedukti proofs for 3,383 problems of
the TPTP problem library v6.3.05 [104].

4.7 Experimental Results

4.7.1 Manually Orienting Theories

We tested iProverModulo on 5 theories, corresponding to axiom files of the
TPTP library. We manually transformed these axiom files into rewrite systems,
by reasoning about how to ensure cut admissibility6. More precisely, we con-
sidered ANA001, axioms defining the analysis (limits) for continuous functions,
BOO001, axioms defining a ternary Boolean algebra (a Boolean algebra with a
ternary multiplication function), FLD001, axioms defining ordered fields, and
SET001 and SET002, axioms defining a weak set theory using respectively
predicates or function symbols to define unions, intersections, differences, and
complements. We tested all the problems of the TPTP library v4.0.0 that use
these axiom sets.

As we need to switch off some simplifications in order for OPRMT to be
complete, we compare it to the following calculi:

Restricted resolution: in this case, the same options are given to iProver as
when OPRMT is tried. The only difference is that the --modulo flag is
switched off, the axioms being therefore considered as normal clauses instead
of rewrite rules.

Default resolution: in this case, the default options of iProver are used. Only
the Inst-Gen prover is turned off.

Full iProver: iProver is launched with its default options. In particular, the
Inst-Gen prover is combined with the resolution prover.

We ran each problem with a timeout of 60 s for each of the 4 calculi
mentioned above. Tests were performed on an Intel Core i3-330M 2.13 GHz
computer. The results are summarized in Table 3 and represented graphically
in Figure 15. The time taken for a given problem by OPRMT is compared to
the time taken by the other calculi. Since the scale is logarithmic, for all points
above the dashed line, OPRMT is 10 times faster than the other calculi, and
for all points above the dotted line, 100 times faster. As we can see, OPRMT
is always at least as efficient as restricted or default resolution, and in most of
the cases at least 10 times better. This was expected because having proved
cut admissibility for the considered rewrite system implies that the theory is

5 The corresponding generated Dedukti files are available at:
https://cloud.lsv.ens-cachan.fr/public.php?service=files&t=
59f1cdee894ea25967a51bcadc76052a.

6 The rewrite systems that we designed to present these theories are given at:
http://www.ensiie.fr/~guillaume.burel/empty_iProverModulo.html.en.

https://cloud.lsv.ens-cachan.fr/public.php?service=files&t=59f1cdee894ea25967a51bcadc76052a
https://cloud.lsv.ens-cachan.fr/public.php?service=files&t=59f1cdee894ea25967a51bcadc76052a
http://www.ensiie.fr/~guillaume.burel/empty_iProverModulo.html.en

42 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

ANA001 BOO001 FLD001
(%) t # (%) t # (%) t

OPRMT 3 (75) 11.41 3 (100) 0.01 40 (29) 0.95
restricted
resolution 0 (0) NA 0 (0) NA 23 (17) 2.85
default

resolution 1 (25) 25.34 1 (33) 25.46 40 (29) 13.55
full

iProver 1 (25) 0.18 1 (33) 0.42 42 (31) 4.69

SET001 SET002 Total
(%) t # (%) t # (%) t

OPRMT 15 (100) 0.01 8 (100) 0.01 69 (42) 1.05
restricted
resolution 15 (100) 4.05 5 (63) 8.06 43 (26) 3.88
default

resolution 15 (100) 0.96 7 (88) 22.99 64 (39) 12.00
full

iProver 15 (100) 0.17 7 (88) 7.11 66 (40) 3.79

Table 3 Comparison of Different Calculi on Problems Extracted from the TPTP Library.
#: number of solved problems; %: percentage in the problem set corresponding to the theory;
t: average time to find a proof for the solved problems.

consistent, and the prover does not try to find a contradiction in the theory.
A more surprising result is that using iProver in its whole is only rarely much
better than using OPRMT. This means that the gain of using OPRMT relative
to using ordered resolution is comparable to the gain obtained by combining it
with the Inst-Gen method (including the use of an efficient SAT solver).

4.7.2 Automated Transformation of Theories

To test iProverModulo in a fully automated way, we tested it on the 12,720 prob-
lems in FOF or CNF format of the TPTP v7.1.0 library whose declared status
is either Theorem or Unsatisfiable. We used autotheo to orient axioms. We
compared the following provers:

autotheo+iProverModulo : we have a schedule that first orients the axioms
using the Equiv(ClausalAll) strategy and launches iProverModulo with the
resulting rewrite system for half of the given time. If the set of clauses
is saturated (which means that the resulting rewrite system probably
does not enjoy cut admissibility), or if the time limit is exceeded, we
restart by orienting the axioms using the ClausalAll strategy and launching
iProverModulo with the resulting rewrite system for the remaining of the
time. In both cases, the Inst-Gen calculus is turned off since we want to
compare the resolution calculi.

Deduction Modulo Theory for Automated Reasoning Tools 43

0.01 0.1 1 10

OPRM time (s)

0.01

0.1

1

10

ti
m

e
(s

)

Restricted Resolution
Default Resolution
Full iProver

Fig. 15 Comparison of Different Calculi on Problems Extracted from the TPTP Library.
The x-axis gives the time taken by OPRMT, the y-axis by the other calculi.

iProver : we launch the same version (0.7) of iProver as the one used in
iProverModulo, with the same options as those given to iProverModulo. The
Inst-Gen calculus is still turned off.

Zenon Modulo : we launch Zenon Modulo with the heuristic presented in Sec-
tion 3.3.3.

E : as a reference of a state-of-the-art prover, we launch E version 1.8 with
automatic options (–auto).

We ran each problem with a timeout of 120 s for each prover (which means
that each orientation strategy got a timeout of 60 s for autotheo+iProverModulo),
and a memory limit of 1 GiB. Tests were performed on virtualized Intel Core Pro-
cessor (Haswell, no TSX) 2.30 GHz CPUs.

The results are summarized in Table 4. The “Gave up” line indicates when
the prover exhausted the proof search space without finding a proof. This should
not happen if the prover is complete. The “Unique proof” line corresponds to
the number of problems that were proved by the given tool but not by the
three others.

If we compare autotheo+iProverModulo to iProver, these results show that
reasoning modulo a theory expressed as a rewrite system improves proof search,
even though the translation of the theory into the rewrite system was performed
automatically. Compared to E, autotheo+iProverModulo is able to prove almost
half of the problems solved by a state-of-the-art theorem prover.

iProverModulo and Zenon Modulo give up for a relative high number of
problems, which reveals some incompleteness. In the case of iProverModulo,

44 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

iProverModulo iProver Zenon Modulo E
Proof found 4,399 (34.6%) 3,682 (28.9%) 2,569 (20.2%) 8,909 (70.0%)
Gave up 664 (5.2%) 196 (1.5%) 1,252 (9.8%) 6 (0.0%)

Resource out 7,657 (60.2%) 8,842 (69.5%) 8,899 (70.0%) 3,805 (29.9%)
Unique proof 38 35 61 3,886︸ ︷︷ ︸

Proved only by iProverModulo and/or Zenon Modulo: 109

Table 4 Comparison of autotheo+iProverModulo to iProver, Zenon Modulo and E on
12,720 TPTP Problems.

the ClausalAll strategy should theoretically provide rewrite systems for which
iProverModulo should be complete. However, this is only the case when the term
rewrite system is confluent and terminating. This is one of the explanations why
iProverModulo gives up finding a proof for some problems. Another explanation
is the interaction of resolution modulo theory with the axioms for equality,
which may be incomplete. In the case of Zenon Modulo, in addition to the
fact that Zenon itself might not be complete, the absence of narrowing often
explains why Zenon Modulo gives up on some problems.

Although iProverModulo and Zenon Modulo do not prove as many theorems
as E, there are 109 problems where they can find a proof but not E. For
Zenon Modulo, this is in particular the case in the SET and SEU category,
which is not surprising since Zenon Modulo was designed to prove problems
in a set theory. A few other problems proved only by iProverModulo and/or
Zenon Modulo comes from the SWV (software verification) category. This may
probably be explained by the fact that these problems contains a relatively big
theory that can be well oriented as a rewriting system.

5 Deduction Modulo Theory in Zenon Modulo and iProverModulo

In this section, we aim to discuss and compare the approaches used by
Zenon Modulo and iProverModulo to integrate Deduction modulo theory. The
approaches used by the two tools are not only different because they rely on
different proof search methods, but also because they have been designed in
different contexts for different purposes. This is why the presentations of the
two ATPs in Sections 3 and 4 come with two different benchmarks (and not
the same one), for which they obtain best results.

The integration of Deduction modulo theory in Zenon Modulo is purely
native. A genuine rewriting is performed once an atomic formula can be
matched by the left-hand side of a rewrite rule. As explained in Section 3.3.1,
the normalization process is actually engaged only when the formula is atomic.
This approach allows us not to uselessly normalize all the formulas all the
time. The rewritings that have been performed by the normalization of a given
formula are not tracked by the prover, which means that we really reason over

Deduction Modulo Theory for Automated Reasoning Tools 45

propositions modulo a congruence, which is induced by the rewrite system, i.e.
we do not distinguish congruent formulas.

As a consequence and as shown in Section 2.1, the proofs obtained by
Zenon Modulo are simpler and shorter compared to the equivalent proofs that
could be found without Deduction modulo theory using the regular version
of Zenon. However, this imposes that the backend verifier, which verifies that
the produced proofs are sound, must be compliant with Deduction modulo
theory, i.e. this verifier must be able to reason modulo a congruence over
propositions. This is the case of Dedukti, which can verify the proofs generated
by Zenon Modulo [48]. But Zenon has also a Coq output [30], which cannot be
used by Zenon Modulo as it produces no trace of rewriting and Coq requires to
explicitly mention every single rewriting. A solution could be to produce traces
of rewriting in all the cases, removing them when verifying proofs with Dedukti
and providing them to Coq when using Coq verification, but we would lose
the advantage of having compact proofs, which is not satisfactory. We must
therefore realize that when we aim to integrate Deduction modulo theory, it
must be used at all stages, proof search and proof verification.

As for iProverModulo, the integration of Deduction modulo theory is actually
simulated for proposition rewrite rules (there is no rewriting mechanism intro-
duced for them in the architecture of the prover) contrary to Zenon Modulo. As
explained in Section 4.3, this is possible by introducing the notion of one-way
clause [59], which imposes some additional constraints on the resolution rule.
These constraints can be easily implemented by using a strategy similar to
the set-of-support strategy for resolution [112] and by patching the selection
mechanism. The advantage of such integration is that it is quite generic and
can be ported to any resolution-like ATP. The drawback is that formulas are
not normalized, but they are narrowed step by step; the confluence of the
rewriting system, if assumed true, is not taken into account and all rewriting
paths are potentially considered. For term rewrite rules, however, iProverModulo
has a dedicated rewriting mechanism, which is quite efficient thanks to the
compilation of the rewrite rules as explained in Section 4.4.

Regarding the verification of proofs and as said in Section 4.6, iProverModulo
is only able to partially verify them contrary to Zenon Modulo, which can verify
proofs in their entirety. In fact, iProverModulo can verify pure resolution proofs
according to what is described in [38], but cannot deal with clausification
and proofs using the instantiation-generation (Inst-Gen) calculus [65]. These
two parts are seen as black boxes in iProverModulo and rely on external tools,
so that it is difficult to verify proofs as a whole. A very current trend is to
build new ATPs aggregating several automated proof techniques and tools,
and it therefore becomes complicated to verify the produced proofs. However,
this verification has never been so important since this combination of tools
increases the risk of building an overall unsound tool.

Zenon Modulo and iProverModulo have not been designed in the same
frameworks nor to deal with the same kind of problems. This therefore had
significant consequences on the choices that have been made regarding their
respective implementations.

46 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

Zenon Modulo has been built in the framework of the industrial research
project BWare [56,107], whose aim was to improve the automated verification
of Proof Obligations (POs for short) coming from the modeling of industrial
applications using the B method [1]. As the B method relies on a set theory,
the goal has been to develop (express) this theory manually using Deduction
modulo theory together with the corresponding tool (Zenon Modulo), which
had to be fully compliant with Deduction modulo theory. Besides Deduction
modulo theory, we had to add arithmetic [44] (as a significant part of the POs
involves arithmetic) and polymorphic types [41]. Polymorphic types allowed us
to express the B set theory in a compact way, and especially as a pure rewrite
system (where typing constraints have been removed). Thus, Zenon Modulo
has been designed in this very specific context with this very specific purpose,
and as can be seen in Section 3.6, it obtains very good results, in particular
compared to some of the best state-of-the-art ATPs.

As the goal was to only focus on the BWare benchmark, Deduction modulo
theory has not been fully implemented in Zenon Modulo. In particular, this is
the case of narrowing for at least two reasons. First, we do not need to build
sets in proofs of POs and we therefore do not need to narrow metavariables
representing sets. Second, in the B set theory, there are about 40 set constructs
introduced by defining axioms (rewrite rules in our case). To narrow a set
metavariable, we would therefore need to choose among these 40 possibilities,
which implies a large proof search space due to this combinatorial choice and
may be ineffective in most of the cases.

Even though it was developed for a specific purpose, the very first versions
of Zenon Modulo have been tested over a more general-purpose benchmark, i.e.
the TPTP library [104]. Over all the problems, we slightly improved the results
of Zenon (2.5% in the best case), and for some categories, we even obtained
significant improvements (about 50% in the SET category, for example). These
saw-tooth results can be explained since Deduction modulo theory provides
best results when the theory can be built manually. Here, in this experiment,
the rewrite systems are built automatically on the fly by means of several
heuristics, which may produce inappropriate rewrite systems. The full results
of this experiment can be found in [55].

Compared to Zenon Modulo, iProverModulo has a more generic approach
and has not been designed to deal with a specific form of problems in a specific
theory. This is evidenced in particular by the benchmark that has been chosen
to test the prover, i.e. problems from the TPTP library (see the results in
Section 4.7). As Zenon Modulo, iProverModulo is able to deal not only with
given rewrite systems, but can also build on the fly rewrite systems in a fully
automated way. The difference with Zenon Modulo is that it proposes full
support for Deduction modulo theory, with complete strategies in some cases
(for example, the ClausalAll strategy for consistent theories, see Section 4.5).

To conclude this comparison between the approaches adopted by Zenon Mod-
ulo and iProverModulo to integrate Deduction modulo theory, it should be noted
that the goal of these experiments is to assess the improvement that can be
provided by Deduction modulo theory to ATPs in practice. The aim is therefore

Deduction Modulo Theory for Automated Reasoning Tools 47

to show this improvement for a given prover (either Zenon or iProver, in our
case), and not necessarily to compare the extended versions to other ATPs.
This comparison with other ATPs remains important but appears to be more
marginal since even extended with Deduction modulo theory, the new prover is
mainly dependent on the proof engine of the initial prover, even though, in some
cases, we obtain very positive results (for example, Zenon Modulo outperforms
some of the best state-of-the-art ATPs when tested over the BWare benchmark;
see the results in Section 3.6). In this context, we plan to investigate other
integrations of Deduction modulo theory to other proof techniques and tools
(see Section 7.2 for more details about our perspectives in this matter).

6 Related Work

Historically, automated reasoning consists of uniform proof search procedures
for first-order logic. If these procedures, which are mainly divided into two
schools, namely Beth and Hintikka’s tableaux [21,20,74,73] and Robinson’s
resolution [94], rely on a quite expressive formalism, they fail to be efficient
when reasoning in some specific theories. The reason is that they are purely
syntactical approaches, which use the axioms of the theory mechanically without
any insight that could be provided by the semantics of the theory. As they
are, these methods therefore have a limited success since we must find some
appropriate mechanisms to gain efficiency when reasoning modulo theories.
This is exactly the topic of this paper, which proposes a method based on
Deduction modulo theory [60].

Reasoning modulo theories is a current trend in automated reasoning and
a very active field of research in this community. However, it drew attention
at the earliest age of automated reasoning. For example, the set-of-support
strategy, that was introduced by Wos et al. [112] the same year as Robinson’s
resolution (1965), can be seen as a way to take into account that a theory
is consistent. In 1972, Plotkin [91] also showed how to deal with equational
theories in resolution-based ATPs. One of the most influencing attempt to
tackle reasoning modulo theories dates back in the middle of 80’s with the
work of Stickel [102] in the context of resolution. Following this idea of theory
resolution, several first-order calculi have been given sound and complete theory
extensions that rely on the computation of complete sets of theory unifiers.
However, these initiatives failed to produce efficient implementations, mostly
due to the practical difficulty, or the theoretical impossibility, of computing
theory unifiers for concrete background theories of interest.

As pointed out by [100], to gain efficiency when reasoning modulo theories,
the idea is to address only (expressive enough) decidable or semi-decidable
fragments of a certain logic, and incorporate specific reasoning over certain
domains, such as equality, arithmetic, or data structures (arrays, lists, stacks,
etc.). In this vein, SMT (Satisfiability Modulo Theories) solving [12,13] has
appeared as a very concrete and effective solution over the last two decades. The
advent of SMT solving is mainly due to the concomitance of some significant

48 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

advances in several domains. One of them concerns the increasing efficiency
of SAT solvers (using Davis-Putnam-Logemann-Loveland’s algorithm [53,52]
or the conflict-driven clause learning approach [81]), which SMT solvers rely
on. But SMT solving has also been inspired by other results regarding decision
procedures and combination of these procedures (e.g., Nelson-Oppen’s con-
gruence closure procedure [85], Nelson-Oppen’s combination method [84], and
Shostak’s combination method [101]), as well as other systems, in particular,
Boyer and Moore’s Nqthm prover [33] and Detlefs, Nelson, and Saxe’s Simplify
prover [57].

Even though SMT solvers only deal with ground clauses, some of them are
able to propose support for quantifier reasoning. However, quantifier reasoning is
a long-standing challenge for SMT solving, for which there is no general decision
procedure for quantifiers. Most of state-of-the-art SMT solvers with support for
quantifiers therefore use heuristic quantifier instantiation [67] for incorporating
quantifier reasoning with ground decision procedures. One of these heuristic
instantiation-based approaches, which is often used in the implementation of
SMT solvers, is the E-matching algorithm [54], which was first introduced by the
Simplify theorem prover, previously mentioned. If heuristic instantiation appears
to be quite effective in some domains (e.g., software verification applications [11,
64]), it is not complete for first-order logic. This is a significant difference with
what we propose in this paper. Deduction modulo theory allows us to extend
TPTP-like first-order ATPs, which are originally complete for first-order logic
as they rely on unification rather than matching, without compromising this
completeness. All the difficulty therefore depends on the design of the rewrite
system modeling the theory, which must have appropriate properties ensuring
that cut-free completeness is preserved.

In practice, there is also another significant difference between SMT solving
and Deduction modulo theory. Adding a new theory in a SMT solver requires
to check beforehand how this theory can be integrated and combined with the
other theories, as well as to develop the corresponding decision procedure by
complying with the interface proposed by the solver to integrate new theories.
In Deduction modulo theory, the integration is smoother and more generic, as
once the rewrite system is designed, we just have to feed the compatible ATPs
with this rewrite system without having to develop any additional material.

Besides SMT solving, there is also a plethora of work regarding reasoning
modulo theories in the context of first-order calculi. In particular, many papers
are directly in line with the ideas of Stickel [102] regarding theory resolution,
previously mentioned. Stickel’s work was ported to many calculi, such as path
resolution [83], the connection method [90], connection graphs [87], or model
elimination [14]. We can also mention ordered theory resolution [15], imposing
ordering restrictions on theory resolution, or theory instantiation [66], relying
on instantiation calculus [65] (implemented in the iProver ATP [78]). Still in
the domain of resolution, we have hierarchical superposition calculus [8,17] as
well, introduced as a generalization of superposition calculus for black-box style
theory reasoning, and implemented in the Beagle tool [16] in particular. There
is also some work in the context of sequent calculus and tableaux. For example,

Deduction Modulo Theory for Automated Reasoning Tools 49

there are some generic approaches, such as [19], where the authors propose the
use of incremental theory reasoning in free-variable semantic tableaux, or [108],
which describes a multi-theory version of the semantic tableau calculus. Some
other approaches focus on specific theories. For instance, [18] studies various
ways of handling equality in tableaux, while [95] introduces a sequent calculus
integrating linear integer arithmetic, which combines free-variable tableaux
with incremental closure [68] and the Omega quantifier elimination procedure
(this work has been implemented in the Princess tableau-based ATP).

All the work described above shares the same line of research, which consists
in adding black-box reasoners for specific background theories to first-order
automated reasoning methods. All the difficulty therefore resides in getting the
regular general-purpose reasoner and the background reasoner(s) to cooperate
in a sound and complete way. The approach of Deduction modulo theory is
quite different in the sense that we remain in the same formalism, i.e. first-order
logic where we reason modulo a congruence over terms and propositions. As a
consequence, there is no notion of foreground and background reasoners, and
there is no need to worry about the interface between the general-purpose
reasoning and the theory reasoning. However, the considered theory must
contain a computable part that can be exhibited and exploited to prove
theorems in this theory. If this works quite well for some (parts of) theories,
e.g. set theory (see the results obtained by Zenon Modulo over the BWare
benchmark in Section 3), it cannot be applied for some other theories, which
either do not contain any computable part or contain computable parts but
which cannot be exploited. For example, although arithmetic can be expressed
using Deduction modulo theory [62], it is not of great help to automatically
prove lemmas in the (decidable) linear fragment of arithmetic. In this case,
we need a specialized procedure, i.e. a background reasoner, which cannot be
deduced from the expression of the theory.

Still in the vein of reasoning modulo theories in the context of first-order
calculi, we have to mention the work that has been made around superde-
duction [34], which is in direct correspondence with the ideas of Deduction
modulo theory. While Deduction modulo theory aims to integrate axioms of
the theory as computation rules, superdeduction proposes to integrate them
as deduction rules. The two approaches are therefore very similar and play
on the duality between computation and deduction. But superdeduction goes
further and adds to this transformation the decomposition of the connectives
occurring in the formula introduced by the axiom (the formula corresponding
to the right-hand side of the rewrite rule). This corresponds to an extension
of Prawitz’s folding (resp. unfolding) rules [92], where as most connectives of
the formula as possible are introduced (resp. eliminated). Superdeduction may
be seen as the alliance of Deduction modulo theory with focusing, which is a
technique initially introduced in the framework of linear logic [2]. In practice,
a tool, called Super Zenon [75], has been implemented and integrates superde-
duction into the Zenon ATP. Several experiments have been conducted with
Super Zenon using in particular a benchmark of proof rules of Atelier B [50],
maintained by the Siemens company, and another one coming from the TPTP

50 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

library [104]. These experiments have shown significant improvements (in terms
of number of proved problems) and speed-ups (both in terms of proof time and
proof size) compared to the use of the regular version of Zenon in particular.
The detailed results can be found in [75,76].

When reasoning modulo theories, it may be necessary to rely on types in
first-order logic, at least to distinguish the parts of the formula requiring theory
reasoning from the other parts of the formula. However, typed first-order logic,
aka many-sorted first-order logic, plays a greater role than only distinguishing
parts of a formula as the use of types can provide useful guidance for proof
search in automated deduction. In this vein, a number of papers like [97,110,
77,25,109,93] have emerged, where simple types, polymorphic types, and even
dependent types have been introduced in the context of first-order logic. Beyond
proof search guidance and depending on the considered typing system, it also
increases the expressiveness of first-order logic. This feature is quite important
in the framework of Deduction modulo theory as it allows us to get rid of
the typing conditions in first-order formulas [105], which can be turned into
pure rewrite rules, avoiding conditional rewrite rules. In practice, although
there are some initiatives, such as the introduction of the TFF1 language [23]
to deal with polymorphic first-order formulas in the TPTP library [104] for
example, it appears that very few ATPs are able to deal with elaborate types,
i.e. beyond simple types (which are mainly used for theory reasoning and
arithmetic in particular). For instance, currently and to our knowledge, there
are only four ATPs able to deal with polymorphic first-order logic, namely
Zenon Modulo [55], Zipperposition7 (developed by S. Cruanes), ArchSAT8 [42]
(developed by G. Bury), and Alt-Ergo9 (developed by the OCamlPro company).
One explanation is that although polymorphism is not difficult to introduce
from a theoretical point of view, it remains a little complicated to implement
and involves rather significant changes in the architecture of the prover. An
alternative is to encode polymorphic types into first-order logic [22], which has
been implemented in tools like Why3 [26] for example, but this option may be
less effective in practice (see the low results obtained by iProverModulo over
the BWare benchmark in Section 3 for instance).

7 Conclusion

7.1 Achievements

Deduction modulo theory can be seen as an evolution of proof systems, where
theories are integrated as computations (rewrite rules) more closely to the
deduction kernel of these proof systems. The initial goal of Deduction modulo
theory was to improve automated deduction by allowing us to perform pure

7 Available at: https://github.com/c-cube/zipperposition/.
8 Available at: https://github.com/Gbury/archsat/.
9 Available at : https://alt-ergo.ocamlpro.com/.

https://github.com/c-cube/zipperposition/
https://github.com/Gbury/archsat/
https://alt-ergo.ocamlpro.com/

Deduction Modulo Theory for Automated Reasoning Tools 51

computations during proof search. That is why the seminal paper about De-
duction modulo theory [60] introduces not only the theory itself, but also an
integration of Deduction modulo theory into a resolution-based proof search
method (ENAR). In the wake of this work, another paper followed that de-
scribed a tableau method for Deduction modulo theory [29]. These papers
introduced new generation of proof search methods based on Deduction modulo
theory, but only theoretically and no experiment was conducted before the
development of Zenon Modulo and iProverModulo, which respectively extend
Zenon and iProver to Deduction modulo theory, and which are presented in
this paper. These tools satisfied a real need of experimentation because even if
a proof search method is sound and complete, it may also unfortunately turn
out to be ineffective in practice.

As shown by the experimental results in Secs. 3 and 4, Zenon Modulo and
iProverModulo provide significant improvements in terms of proved problems,
compared to the tools from which they have been developed but also compared
to other state-of-the-art ATPs. These improvements are observed over specific
benchmarks (like the BWare benchmark, which gathers problems from software
verification using the B method in particular), but also more general-purpose
benchmarks (like the TPTP library). When the theory is known in advance
(for example, this is the case of the B set theory used by Zenon Modulo over the
BWare benchmark), the results are even better as the theory can be modeled
in a suitable way using Deduction modulo theory, ensuring properties like
confluence or cut-free completeness. But even when the theory (or a part of the
theory) is transformed on the fly into a rewrite system by means of heuristics
(some of which may be quite efficient, preserving completeness for example), the
results are very satisfactory as well (see the results of iProverModulo over the
TPTP library, and also those of Zenon Modulo over the same library in [55]).

Beyond the improvements obtained by Zenon Modulo and iProverModulo,
it should be noted that both tools have adopted a certifying approach, since
they are able to produce proofs that can be checked by an independent and
external tool (in that sense, they satisfy the De Bruijn criterion as formulated
by Barendregt in [9]). This feature is quite important, as many bugs may occur
in the implementation of ATPs (some parts of code are highly non-trivial, such
as the clausification process in resolution-based provers for instance), and we
have no choice but to note that very few of them adopt such an approach. The
tool used to check the proofs produced by Zenon Modulo and iProverModulo is
Dedukti, a universal proof checker that also relies on Deduction modulo theory.
The fact that Dedukti relies on Deduction modulo theory allows our ATPs to
produce proofs with no trace of computations and it is enough to provide the
rewrite rules to Dedukti, which can perform the necessary computations when
verifying the generated proofs. In that sense, our ATPs satisfy the Poincaré
principle as also formulated by Barendregt in [9].

52 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

7.2 Future Work

Building on the quite satisfactory results obtained by Zenon Modulo and
iProverModulo, we plan to apply Deduction modulo theory to other proof
search methods. In particular, we aim to study Deduction modulo theory in
the framework of superposition. From a theoretical point of view, this study
raises several problems, including the fact that there are actually two rewrite
systems to be considered, one coming from the set of equations handled by
the superposition calculus and the other coming from the Deduction modulo
theory. The two rewrite systems have to be merged, and we have to wonder if
the resulting system enjoys the same properties (confluence, termination, etc.).
Currently, we are testing an experimental prototype of a superposition-based
ATP where rewriting over terms and propositions has been integrated. More
precisely, this prototype is built on top of the Zipperposition tool and is tested
over a small benchmark of B set problems (about 300 problems), for which it
obtains very promising results [43].

We also plan to study Deduction modulo theory in the scope of SMT
solving. Most of the modern SMT solvers use heuristic quantifier instantiation
for incorporating quantifier reasoning with ground decision procedures. This
mechanism is not refutationally complete for first-order logic, and generally
requires hints (triggers), which are sensitive to the syntactic structure of the
formula. Inserting triggers at some appropriate places in axioms allows us to
emulate rewriting in SMT solvers. A rewrite system is then a set of axioms with
triggers (inserted manually or automatically), and no change in the architecture
of the SMT solver is actually required. An experiment is currently being carried
out using the ArchSAT SMT solver [42] over the same benchmark of B set
problems introduced previously for Zipperposition, and ArchSAT obtains quite
promising results as well [43].

Deduction modulo theory has another line of work, which is the interoper-
ability between proof systems, and which will be subject to intensive research
in the next few years. We aim to ensure this interoperability by means of
the Dedukti tool, which offers a logical framework based on the λΠ-calculus
modulo theory, and the first step consists in showing that many theories can
be expressed using Dedukti. As can be seen in [6], many systems can be em-
bedded into Dedukti (constructive and classical predicate logic, simple type
theory, programming languages, pure type systems, the calculus of inductive
constructions with universes, etc.), and large libraries coming from various
systems can be translated and checked by Dedukti (HOL Light, Matita, FoCaLiZe,
etc.). This work around Dedukti is essential as it is the backend of our ATPs
based on Deduction modulo theory. As mentioned earlier, this backend is very
appropriate since our ATPs can produce proofs without computations, which
are redone by Dedukti (Poincaré’s principle). Conversely, the Dedukti outputs of
our ATPs bring new encodings to Dedukti therefore showing its versatile feature
and its ability of scaling-up (the considered benchmarks, BWare or TPTP,
consist of large libraries, and in the case of BWare, each problem involves large
formulas). A second step toward interoperability can be to use our ATPs to

Deduction Modulo Theory for Automated Reasoning Tools 53

perform proof reconstruction within Dedukti, when the latter receives only
partial proof objects. Finally, we intend to use Dedukti to realize concrete
interoperability between two proof systems. An example of application could
arise from automated deduction, where we can envision that two ATPs use
Dedukti as a communication language (not only as a backend to certify their
proofs) in order to collaborate in their proof search.

Acknowledgements We thank the anonymous reviewers for their careful reading of our
manuscript and their many insightful comments and suggestions, which helped us improve
and clarify this manuscript.

References

1. Abrial, J.R.: The B-Book, Assigning Programs to Meanings. Cambridge University
Press, Cambridge (UK) (1996). ISBN 0521496195

2. Andreoli, J.M.: Logic Programming with Focusing Proofs in Linear Logic. Journal of
Logic and Computation (JLC) 2(3), 297–347 (1992)

3. Assaf, A.: A Framework for Defining Computational Higher-Order Logics. Ph.D. thesis,
École polytechnique (2015)

4. Assaf, A.: Conservativity of Embeddings in the λΠ Calculus Modulo Rewriting. In:
Typed Lambda Calculi and Applications (TLCA), LIPIcs, vol. 38, pp. 31–44. Schloss
Dagstuhl, Leibniz-Zentrum fuer Informatik, Warsaw (Poland) (2015)

5. Assaf, A., Burel, G.: Translating HOL to Dedukti. In: Proof eXchange for Theorem
Proving (PxTP), EPTCS, vol. 186, pp. 74–88. Open Publishing Association, Berlin
(Germany) (2015)

6. Assaf, A., Burel, G., Cauderlier, R., Delahaye, D., Dowek, G., Dubois, C., Gilbert, F.,
Halmagrand, P., Hermant, O., Saillard, R.: Dedukti: a Logical Framework based on the
λΠ-Calculus Modulo Theory (2016). Submitted, available at:
http://www.lsv.ens-cachan.fr/~dowek/Publi/expressing.pdf

7. Bachmair, L., Ganzinger, H.: Resolution Theorem Proving. In: Handbook of Automated
Reasoning, vol. 1, pp. 19–99. Elsevier and MIT Press (2001)

8. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational Theorem Proving for Hier-
archic First-Order Theories. Applicable Algebra in Engineering, Communication and
Computing 5, 193–212 (1994)

9. Barendregt, H., Barendsen, E.: Autarkic Computations in Formal Proofs. Journal of
Automated Reasoning (JAR) 28(3), 321–336 (2002)

10. Barendregt, H., Dekkers, W., Statman, R.: Lambda Calculus with Types. Cambridge
University Press (2013). ISBN 9780521766142

11. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A Modular
Reusable Verifier for Object-Oriented Programs. In: Formal Methods for Components
and Objects (FMCO), LNCS, vol. 4111, pp. 364–387. Springer, Amsterdam (The
Netherlands) (2005)

12. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories.
In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol.
185, pp. 825–885. IOS Press (2009)

13. Barrett, C.W., Tinelli, C.: Satisfiability Modulo Theories. In: Handbook of Model
Checking, pp. 305–343. Springer (2018)

14. Baumgartner, P.: A Model Elimination Calculus with Built-in Theories. In: German
Conference on Artificial Intelligence (GWAI), LNCS, vol. 671, pp. 30–42. Springer,
Bonn (Germany) (1992)

15. Baumgartner, P.: An Order Theory Resolution Calculus. In: Logic Programming and
Automated Reasoning (LPAR), LNCS, vol. 624, pp. 119–130. Springer, St. Petersburg
(Russia) (1992)

http://www.lsv.ens-cachan.fr/~dowek/Publi/expressing.pdf

54 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

16. Baumgartner, P., Bax, J., Waldmann, U.: Beagle – A Hierarchic Superposition Theorem
Prover. In: Conference on Automated Deduction (CADE), LNCS, vol. 9195, pp. 367–377.
Springer, Berlin (Germany) (2015)

17. Baumgartner, P., Waldmann, U.: Hierarchic Superposition with Weak Abstraction. In:
Conference on Automated Deduction (CADE), LNCS, vol. 7898, pp. 39–57. Springer,
Lake Placid (NY, USA) (2013)

18. Beckert, B.: Semantic Tableaux with Equality. Journal of Logic and Computation
(JLC) 7(1), 39–58 (1997)

19. Beckert, B., Pape, C.: Incremental Theory Reasoning Methods for Semantic Tableaux.
In: Theorem Proving with Analytic Tableaux and Related Methods (TABLEAUX),
LNCS, vol. 1071, pp. 93–109. Springer, Terrasini (Palermo, Italy) (1996)

20. Beth, E.W.: The Foundations of Mathematics: A Study in the Philosophy of Science.
Studies in Logic and the Foundations of Mathematics. North-Holland Pub. Co. (1959)

21. Beth, E.W.: Formal Methods: An Introduction to Symbolic Logic and to the Study of
Effective Operations in Arithmetic and Logic, Synthese Library, vol. 4. D. Reidel Pub.
Co. (1962)

22. Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding Monomorphic and
Polymorphic Types. Logical Methods in Computer Science (LMCS) 12(4) (2016)

23. Blanchette, J.C., Paskevich, A.: TFF1: The TPTP Typed First-Order Form with Rank-1
Polymorphism. In: Conference on Automated Deduction (CADE), LNCS, vol. 7898.
Springer (2013)

24. Blanqui, F., Jouannaud, J.P., Okada, M.: The Calculus of Algebraic Constructions.
In: Rewriting Techniques and Applications (RTA), LNCS, vol. 1631. Springer, Trento
(Italy) (1999)

25. Bläsius, K.H., Hedtstück, U., Rollinger, C.R. (eds.): Sorts and Types in Artificial
Intelligence, Workshop, Eringerfeld, FRG, April 24-26, 1989, Proceedings, LNCS, vol.
418. Springer (1989)

26. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd Your Herd of
Provers. In: International Workshop on Intermediate Verification Languages (Boogie),
pp. 53–64. Wrocław (Poland) (2011)

27. Boespflug, M., Burel, G.: CoqinE: Translating the Calculus of Inductive Constructions
into the λΠ-calculus Modulo. In: Proof eXchange for Theorem Proving (PxTP),
CEUR Workshop Proceedings, vol. 878, pp. 44–50. David Pichardie and Tjark Weber,
Manchester (UK) (2012)

28. Boespflug, M., Carbonneaux, Q., Hermant, O.: The λΠ-Calculus Modulo as a Uni-
versal Proof Language. In: Proof Exchange for Theorem Proving (PxTP), pp. 28–43.
Manchester (UK) (2012)

29. Bonichon, R.: TaMeD: A Tableau Method for Deduction Modulo. In: International
Joint Conference on Automated Reasoning (IJCAR), LNCS, vol. 3097, pp. 445–459.
Springer, Cork (Ireland) (2004)

30. Bonichon, R., Delahaye, D., Doligez, D.: Zenon: An Extensible Automated Theorem
Prover Producing Checkable Proofs. In: Logic for Programming, Artificial Intelli-
gence, and Reasoning (LPAR), LNCS/LNAI, vol. 4790, pp. 151–165. Springer, Yerevan
(Armenia) (2007)

31. Bonichon, R., Hermant, O.: A Semantic Completeness Proof for TaMeD. In: Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR), LNCS, vol. 4246, pp.
167–181. Springer, Phnom Penh (Cambodia) (2006)

32. Bonichon, R., Hermant, O.: On Constructive Cut Admissibility in Deduction Modulo.
In: Types for Proofs and Programs (TYPES), LNCS, vol. 4502, pp. 33–47. Springer,
Nottingham (UK) (2006)

33. Boyer, R.S., Moore, J.S.: A Theorem Prover for a Computational Logic. In: Confer-
ence on Automated Deduction (CADE), vol. 449, pp. 1–15. Springer, Kaiserslautern
(Germany) (1990)

34. Brauner, P., Houtmann, C., Kirchner, C.: Principles of Superdeduction. In: Logic in
Computer Science (LICS), pp. 41–50. IEEE Computer Society Press, Wrocław (Poland)
(2007)

35. Burel, G.: Embedding Deduction Modulo into a Prover. In: Computer Science Logic
(CSL), LNCS, vol. 6247, pp. 155–169. Springer, Brno (Czech Republic) (2010)

Deduction Modulo Theory for Automated Reasoning Tools 55

36. Burel, G.: Consistency Implies Cut Admissibility. In: Proof-Search in Axiomatic
Theories and Type Theories (PSATTT). Wrocław (Poland) (2011)

37. Burel, G.: Efficiently Simulating Higher-Order Arithmetic by a First-Order Theory
Modulo. Logical Methods in Computer Science (LMCS) 7(1), 1–31 (2011)

38. Burel, G.: A Shallow Embedding of Resolution and Superposition Proofs into the
λΠ-Calculus Modulo. In: Proof eXchange for Theorem Proving (PxTP), EPiC Series,
vol. 14, pp. 43–57. EasyChair (2013)

39. Burel, G.: Cut Admissibility by Saturation. In: Rewriting Techniques and Applications
(RTA) and Typed Lambda Calculi and Applications (TLCA), LNCS, vol. 8560, pp.
124–138. Springer, Vienna (Austria) (2014)

40. Burel, G., Kirchner, C.: Regaining Cut Admissibility in Deduction Modulo using
Abstract Completion. Information and Computation 208(2), 140–164 (2010)

41. Bury, G., Cauderlier, R., Halmagrand, P.: Implementing Polymorphism in Zenon. In:
International Workshop on the Implementation of Logics (IWIL), EPiC Series in
Computing, vol. 40, pp. 15–20. EasyChair, Suva (Fiji) (2015)

42. Bury, G., Cruanes, S., Delahaye, D.: SMT Solving Modulo Tableau and Rewriting
Theories. In: Satisfiability Modulo Theories (SMT). Oxford (UK) (2018)

43. Bury, G., Cruanes, S., Delahaye, D., Euvrard, P.L.: An Automation-Friendly Set Theory
for the B Method. In: Abstract State Machines, Alloy, B, VDM, and Z (ABZ), LNCS,
vol. 10817, pp. 409–414. Springer, Southampton (UK) (2018)

44. Bury, G., Delahaye, D.: Integrating Simplex with Tableaux. In: Automated Reasoning
with Analytic Tableaux and Related Methods (TABLEAUX), LNCS, vol. 9323, pp.
86–101. Springer, Wrocław (Poland) (2015)

45. Bury, G., Delahaye, D., Doligez, D., Halmagrand, P., Hermant, O.: Automated Deduc-
tion in the B Set Theory Using Typed Proof Search and Deduction Modulo. In: Logic
for Programming, Artificial Intelligence and Reasoning (LPAR), Short Papers, EPiC
Series in Computing, vol. 35, pp. 42–58. EasyChair, Suva (Fiji) (2015)

46. Cauderlier, R.: Object-Oriented Mechanisms for Interoperability between Proof Systems.
Ph.D. thesis, Conservatoire National des Arts et Métiers (Cnam) (2016)

47. Cauderlier, R., Dubois, C.: ML Pattern-Matching, Recursion, and Rewriting: From
FoCaLiZe to Dedukti. In: International Colloquium on Theoretical Aspects of Computing
(ICTAC), LNCS, vol. 9965, pp. 459–468. Springer, Taipei (Taiwan, ROC) (2016)

48. Cauderlier, R., Halmagrand, P.: Checking Zenon Modulo Proofs in Dedukti. In: Proof
eXchange for Theorem Proving (PxTP), EPTCS, vol. 186, pp. 57–73. Open Publishing
Association, Berlin (Germany) (2015)

49. Chvátal, V.: Linear Programming. Series of Books in the Mathematical Sciences. W. H.
Freeman and Company, New York (USA) (1983). ISBN 0716715872

50. ClearSy: Atelier B 4.2.1 (2015). http://www.atelierb.eu/
51. Cousineau, D., Dowek, G.: Embedding Pure Type Systems in the Lambda-Pi-Calculus

Modulo. In: Typed Lambda Calculi and Applications (TLCA), LNCS, vol. 4583, pp.
102–117. Springer, Paris (France) (2007)

52. Davis, M., Logemann, G., Loveland, D.W.: A Machine Program for Theorem-Proving.
Communications of the ACM (CACM) 5(7), 394–397 (1962)

53. Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. Journal of
the ACM 7(3), 201–215 (1960)

54. De Moura, L.M., Bjørner, N.: Efficient E-Matching for SMT Solvers. In: Conference
on Automated Deduction (CADE), LNCS, vol. 4603, pp. 183–198. Springer, Bremen
(Germany) (2007)

55. Delahaye, D., Doligez, D., Gilbert, F., Halmagrand, P., Hermant, O.: Zenon Modulo:
When Achilles Outruns the Tortoise using Deduction Modulo. In: Logic for Program-
ming, Artificial Intelligence, and Reasoning (LPAR), LNCS/ARCoSS, vol. 8312, pp.
274–290. Springer, Stellenbosch (South Africa) (2013)

56. Delahaye, D., Dubois, C., Marché, C., Mentré, D.: The BWare Project: Building a
Proof Platform for the Automated Verification of B Proof Obligations. In: Abstract
State Machines, Alloy, B, VDM, and Z (ABZ), LNCS, vol. 8477, pp. 126–127. Springer,
Toulouse (France) (2014)

57. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A Theorem Prover for Program Checking.
Journal of the ACM 52(3), 365–473 (2005)

http://www.atelierb.eu/

56 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

58. Dowek, G.: Confluence as a Cut Elimination Property. In: Rewriting Techniques and
Applications (RTA), LNCS, vol. 2706, pp. 2–13. Springer (2003)

59. Dowek, G.: Polarized Resolution Modulo. In: Theoretical Computer Science (TCS),
IFIP Advances in Information and Communication Technology, vol. 323, pp. 182–196.
Springer, Brisbane (Australia) (2010)

60. Dowek, G., Hardin, T., Kirchner, C.: Theorem Proving Modulo. Journal of Automated
Reasoning (JAR) 31(1), 33–72 (2003)

61. Dowek, G., Werner, B.: Proof Normalization Modulo. Journal of Symbolic Logic (JSL)
68(4), 1289–1316 (2003)

62. Dowek, G., Werner, B.: Arithmetic as a Theory Modulo. In: Rewriting Techniques and
Applications (RTA), LNCS, vol. 3467, pp. 423–437. Springer, Nara (Japan) (2005)

63. Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd edn. Springer
(1996). ISBN 9781461223603

64. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended
Static Checking for Java. In: Programming Language Design and Implementation
(PLDI), pp. 234–245. ACM, Berlin (Germany) (2002)

65. Gaanzinger, H., Korovin, K.: New Directions in Instantiation-Based Theorem Proving.
In: Logic in Computer Science (LICS), pp. 55–64. IEEE Computer Society, Ottawa
(Canada) (2003)

66. Ganzinger, H., Korovin, K.: Theory Instantiation. In: Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR), LNCS, vol. 4246, pp. 497–511. Springer, Phnom
Penh (Cambodia) (2006)

67. Ge, Y., Barrett, C., Tinelli, C.: Solving Quantified Verification Conditions Using
Satisfiability Modulo Theories. In: Conference on Automated Deduction (CADE),
LNCS, vol. 4603, pp. 167–182. Springer, Bremen (Germany) (2007)

68. Giese, M.: Incremental Closure of Free Variable Tableaux. In: International Joint
Conference on Automated Reasoning (IJCAR), LNCS, vol. 2083, pp. 545–560. Springer,
Siena (Italy) (2001)

69. Halmagrand, P.: Soundly Proving B Method Formulae Using Typed Sequent Calculus.
In: International Colloquium on Theoretical Aspects of Computing (ICTAC), LNCS,
vol. 9965, pp. 196–213. Springer, Taipei (Taiwan, ROC) (2016)

70. Harper, R., Honsell, F., Plotkin, G.D.: A Framework for Defining Logics. Journal of
the ACM 40(1), 143–184 (1993)

71. Hermant, O.: Semantic Cut Elimination in the Intuitionistic Sequent Calculus. In:
Typed Lambda-Calculi and Applications (TLCA), LNCS, vol. 3461, pp. 221–233.
Springer, Nara (Japan) (2005)

72. Hermant, O.: Resolution is Cut-Free. Journal of Automated Reasoning (JAR) 44(3),
245–276 (2010)

73. Hintikka, J.: Notes on the Quantification Theory. Societas Scientiarum Fennica,
Commentationes Physico-Mathematicae 17(12), 1–13 (1955)

74. Hintikka, J.: Two Papers on Symbolic Logic: Form and Content in Quantification Theory
and Reductions in the Theory of Types. Societas Philosophica, Acta philosophica
Fennica 8, 7–55 (1955)

75. Jacquel, M., Berkani, K., Delahaye, D., Dubois, C.: Tableaux Modulo Theories using
Superdeduction: An Application to the Verification of B Proof Rules with the Zenon Au-
tomated Theorem Prover. In: International Joint Conference on Automated Reasoning
(IJCAR), LNCS, vol. 7364, pp. 332–338. Springer, Manchester (UK) (2012)

76. Jacquel, M., Berkani, K., Delahaye, D., Dubois, C.: Tableaux Modulo Theories using
Superdeduction. Global Journal of Advanced Software Engineering (GJASE) 1, 1–13
(2014)

77. Kifer, M., Wu, J.: A First-Order Theory of Types and Polymorphism in Logic Program-
ming. In: Logic in Computer Science (LICS), pp. 310–321. IEEE Computer Society,
Amsterdam (The Netherlands) (1991)

78. Korovin, K.: iProver – An Instantiation-Based Theorem Prover for First-Order Logic
(System Description). In: International Joint Conference on Automated Reasoning
(IJCAR), LNCS, vol. 5195, pp. 292–298. Springer, Sydney (Australia) (2008)

79. Lipton, J., DeMarco, M.: Completeness and Cut-elimination in the Intuitionistic Theory
of Types. Journal of Logic and Computation 15, 821–854 (2005)

Deduction Modulo Theory for Automated Reasoning Tools 57

80. Maehara, S.: Lattice-valued Representation of the Cut-elimination Theorem. Tsukuba
Journal of Mathematics 15(2), 509–521 (1991)

81. Marques Silva, J.P., Lynce, I., Malik, S.: Conflict-Driven Clause Learning SAT Solvers.
In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol.
185, pp. 131–153. IOS Press (2009). ISBN 9781586039295

82. Mentré, D., Marché, C., Filliâtre, J.C., Asuka, M.: Discharging Proof Obligations from
Atelier B using Multiple Automated Provers. In: Abstract State Machines, Alloy, B,
VDM, and Z (ABZ), LNCS, vol. 7316, pp. 238–251. Springer, Pisa (Italy) (2012)

83. Murray, N.V., Rosenthal, E.: Theory Links: Applications to Automated Theorem
Proving. Journal of Symbolic Computation (JSC) 4(2), 173–190 (1987)

84. Nelson, G., Oppen, D.C.: Simplification by Cooperating Decision Procedures. ACM
Transactions on Programming Languages and Systems (TOPLAS) 1(2), 245–257 (1979)

85. Nelson, G., Oppen, D.C.: Fast Decision Procedures Based on Congruence Closure.
Journal of the ACM 27(2), 356–364 (1980)

86. Nerode, A., Shore, R.A.: Logic for Applications. Texts and Monographs in Computer
Science. Springer (1993). ISBN 9780387941295

87. Ohlbach, H.J., Siekmann, J.H.: The Markgraf Karl Refutation Procedure. In: Com-
putational Logic, Essays in Honor of Alan Robinson, pp. 41–112. The MIT Press
(1991)

88. Okada, M.: Phase Semantic Cut-Elimination and Normalization Proofs of First- and
Higher-Order Linear Logic. Theoretical Computer Science (TCS) 227, 333–396 (1999)

89. Oppacher, F., Suen, E.: HARP: A Tableau-Based Theorem Prover. Journal of Auto-
mated Reasoning (JAR) 4(1), 69–100 (1988)

90. Petermann, U.: Towards a Connection Procedure with Built in Theories. In: Logics in
AI, European Workshop JELIA, LNCS, vol. 478, pp. 444–543. Springer, Amsterdam
(The Netherlands) (1990)

91. Plotkin, G.D.: Building-in Equational Theories. Machine Intelligence 7, 73–90 (1972)
92. Prawitz, D.: Natural Deduction. A Proof-Theoretical Study. Stockholm Studies in

Philosophy 3 (1965)
93. Rabe, F.: First-Order Logic with Dependent Types. In: International Joint Conference

on Automated Reasoning (IJCAR), LNCS, vol. 4130, pp. 377–391. Springer, Seattle
(WA, USA) (2006)

94. Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Principle. Journal
of the ACM 12(1), 23–41 (1965)

95. Rümmer, P.: A Constraint Sequent Calculus for First-Order Logic with Linear Integer
Arithmetic. In: Logic for Programming, Artificial Intelligence, and Reasoning (LPAR),
LNCS, vol. 5330, pp. 274–289. Springer, Doha (Qatar) (2008)

96. Saillard, R.: Typechecking in the λΠ-Calculus Modulo: Theory and Practice. Ph.D.
thesis, École Nationale Supérieure des Mines de Paris (2015)

97. Schmitt, P.H., Wernecke, W.: Tableau Calculus for Order Sorted Logic. In: Sorts and
Types in Artificial Intelligence, pp. 49–60 (1989)

98. Schultz, S.: System Description: E 0.81. In: International Joint Conference on Automated
Reasoning (IJCAR), LNCS, vol. 3097, pp. 223–228. Springer, Cork (Ireland) (2004)

99. Schwichtenberg, H., Troelstra, A.S.: Basic Proof Theory, 2nd edn. Cambridge University
Press (2000). ISBN 9780521779111

100. Shankar, N.: Little Engines of Proof. In: Formal Methods Europe (FME), LNCS, vol.
2391, pp. 1–20. Springer, Copenhagen (Denmark) (2002)

101. Shostak, R.E.: Deciding Combinations of Theories. Journal of the ACM 31(1), 1–12
(1984)

102. Stickel, M.E.: Automated Deduction by Theory Resolution. Journal of Automated
Reasoning (JAR) 1(4), 333–355 (1985)

103. Strub, P.-Y.: Coq Modulo Theory. In: Computer Science Logic (CSL), LNCS, vol. 6247,
pp. 529–543. Springer, Brno (Czech Republic) (2010)

104. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF and
CNF Parts, v3.5.0. Journal of Automated Reasoning (JAR) 43(4), 337–362 (2009)

105. Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP Typed First-Order
Form with Arithmetic. In: Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR), LNCS, vol. 7180, pp. 406–419. Springer, Mérida (Venezuela) (2012)

58 G. Burel, G. Bury, R. Cauderlier, D. Delahaye, P. Halmagrand, and O. Hermant

106. Szabo, M.E. (ed.): Collected Papers of Gerhard Gentzen. Studies in Logic
and the Foundation of Mathematics. North-Holland Publishing Company (1969).
ISBN 9780720422542

107. The BWare Project: (2012). http://bware.lri.fr/
108. Tinelli, C.: Cooperation of Background Reasoners in Theory Reasoning by Residue

Sharing. Journal of Automated Reasoning (JAR) 30(1), 1–31 (2003)
109. Walther, C.: Many-Sorted Inferences in Automated Theorem Proving. In: Sorts and

Types in Artificial Intelligence, LNCS, vol. 418, pp. 18–48. Springer, Eringerfeld (Ger-
many) (1989)

110. Weidenbach, C.: First-Order Tableaux with Sorts. Logic Journal of the IGPL 3(6),
887–906 (1995)

111. Weidenbach, C.: Combining Superposition, Sorts and Splitting. In: Handbook of
Automated Reasoning, vol. 2, pp. 1965–2013. Elsevier and MIT Press (2001)

112. Wos, L., Robinson, G.A., Carson, D.F.: Efficiency and Completeness of the Set of
Support Strategy in Theorem Proving. Journal of the ACM 12(4), 536–541 (1965)

http://bware.lri.fr/

	Introduction
	Deduction Modulo Theory
	The Zenon Modulo Automated Theorem Prover
	The iProverModulo Automated Theorem Prover
	Deduction Modulo Theory in Zenon Modulo and iProverModulo
	Related Work
	Conclusion

