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CoMPCERT, the 1st formally proved C compiler

100Kloc of CoQ, developed since 2005 by Leroy-et-al at Inria

Major success story of software verification
the “safest C optimizing compiler’ from Regher-et-al@PLDI'11
Commercial support since 2015 by AbsInt (German Company)
Compile critical software for Avionics & Nuclear Plants
See Kaster-et-alOERTS'18.

Lesson 1 Focus on proving critical properties (e.g. functional
correctness) instead of non-critical properties (e.g. performance).
Actually, only consider partial correctness.

Lesson 2 Use untrusted oracles when possible

Motivations from CoMPCERT successes and weaknesses 3/42
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Untrusted oracles in COMPCERT

Principle : delegate computations to efficient external functions
without having to prove them
= only a checker of the result is verified

i.e. verified defensive programming !

Example of register allocation — a NP-complete problem
e finding a correct and efficient allocation is difficult
o verifying the correctness of an allocation is easy

= only “allocation checking” is verified in CoQ

Benefits of untrusted oracles
simplicity + efficiency + modularity

NB oracles needs to appear in CoQ as “foreign functions”...

Motivations from CoMPCERT successes and weaknesses 4/42
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Foreign functions in CoQ : an unsound example

Standard method to declare a foreign function in CoQ
“Use an axiom declaring its type; replace this axiom at extraction”

LTP 2018

Definition one: nat := (S 0).
Axiom oracle: nat — bool.
Lemma congr: oracle one = oracle (S 0).

auto.
Qed.

With the OCAML implementation “let oracle x = (x == one)”

Unsound (oracle one) = true vs (oracle (S 0)) = false

Similar behavior with side-effects instead.

NB OcaAML “functions” are not functions in the math sense.
They are rather “non-deterministic functions” (ie “relations”)
P(Ax B) ~ A— P(B) where “P(B)" is “B — Prop"

Motivations from CoMPCERT successes and weaknesses
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Oracles in COMPCERT : a soundness issue ?

Oracles are declared as pure functions
Example of register allocation :

Axiom regalloc: RTL.func — option LTL.func.

implemented by imperative OCAML code using hash-tables.

Not a real issue because
their purity is not used in the compiler proof!

This talk proposes an approach to ensure such a claim...

Motivations from CoMPCERT successes and weaknesses 6/42
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Limits of some experimental checkers in COMPCERT

Example of Instruction scheduling (yet another NP-hard pb)
Very elegant translation validation of J-B. Tristan's PhD (2009).
But still not in CoOMPCERT because the checker blows up!

This blow up could be “simply” fixed with hash-consing...
but, require to handle == (pointer equality) in CoQ.

This talks provides a formal (partial) axiom about ==
Suffices for a proof of Tristan's checker with external hash-consing!

Motivations from CoMPCERT successes and weaknesses 7/42
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Foreign Functions := untrusted oracles (in this talk)

e Embedding of arbitrary imperative ML functions into CoQ.
(e.g. aliasing in CoQ code is allowed)

e No reasoning on effects, only on returned values.

Intuition : oracles could have bugs, only their type is ensured

= Foreign Functions are non-deterministic...

(e.g. for I/O reasoning, use http://coq.io/ instead)

e Polymorphism to get “theorems-for-free” about
» (some) invariant preservations by mutable data-structures
» arbitrary recursion operators (needs a small defensive test)
> exception-handling

> ...

e Exceptionally : additional axioms (e.g. pointer equality)
In this case, the “oracle” must be trusted !

Motivations from CoMPCERT successes and weaknesses 8/42
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The (still open) quest of this talk

Define a class "“permissive” of COQ types and a class “safe” of
OcAML values such that

a CoqQ type T is “permissive” iff
any “safe” value compatible with the extraction of T

is soundly axiomatized in CoQ with type T
(for partial correctness)

with “being permissive” and “being safe” automatically checkable
and as expressive as possible !

Could lead to a COQ “Import Constant” construct

Import Constant ident: permissive_type

:= "safe_ocaml_value".

that acts like “Axiom ident: permissive_type’,
but with additional checks during CoQ and OCAML typechecking.

Example safe="well-typed” = “nat-—bool" not permissive.

A Foreign Function Interface for CoqQ (programming) 7?7 10/42
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May-return monads [Fouilhé, Boulmé'14]
Axiomatize “P(A)" as type “77A"
to represent “impure computations of type A"
and “(k a)" as proposition “k ~~ a"
with formal type ~»4:7?A — A — Prop
read “computation k may return value a"
Formal operators and axioms

> retp: A—77A (interpretable as identity relation)
(ret al) 3y — ar=ap

> >=,p""A—> (A—=77B) - 7B
(interpretable as the image of a predicate by a relation)

(k1>>:k2)v->b — da,ki~aANkya~b
encodes OCAML “let x = kyinky" as “k; >= (fun x = kp)”

» mk _annota(k : ??7A) :??{a| k ~~ a}
(returns the True predicate)

NB another interpretation is “ 7?A := A" used for extraction!

A Foreign Function Interface for CoqQ (programming) 7?7 11/42
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Usage of may-return monads

Used to declare oracles in the Verified Polyhedra Library
[Fouilhé, Maréchal, Monniaux, Périn, et. al, 2013-2018]
github.com/VERIMAG-Polyhedra/VPL

However, soundness of VPL design is currently only a conjecture !

Example of Conjecture
“nat — ??bool” is permissive for any welltyped OCAML constant

NB For oracle:nat— ??bool the below property is not provable

V b b’, (oracle one)~b — (oracle (S 0))~b’> — b=b’.

A Foreign Function Interface for CoqQ (programming) 7?7 12/42


github.com/VERIMAG-Polyhedra/VPL

Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

The issue of cyclic values

Consider the following CoOQ type

‘Inductive empty: Type:= Succ: empty — empty. ‘

This type is proved to be empty. (Thm : empty — False).
Then, a function of unit —??empty is proved to never return.

Thus, unit — ??empty is not permissive in presence of OCAML
cyclic values like

let rec loop: empty = Succ loop

My proposal
Add an optional tag on OCAML type definitions to forbid cyclic
values (typically, for inductive types extracted from C0Q).

A Foreign Function Interface for CoqQ (programming) 7?7 13/42
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Axioms of pointer equality also forbids cyclic values

In presence of the following axioms

Axiom phys_eq: V {A}, A — A — 77 bool.
Axiom phys_eq_true: V A (x y: A),
phys_eq x y ~» true — x=y.

where phys_eq x y is extracted on x==y,
the following OCAML value is unsound...

let rec fuel: nat = S fuel

since at runtime “pred fuel == fuel”,
whereas it is easy to prove the following CoQ goal

Goal V (n:nat), pred n = n — n = 0.

and to write a CoQ function distinguishing fuel from 0.

A Foreign Function Interface for CoqQ (programming) 7?7 14/42
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Counter-examples and conjectures of “being permissive”

Here “safe” OCAML functions correspond to
“well-typed” functions (without “obj.magic"” tricks)
and without cyclic-values on extracted types.

Counter-Examples the following types are not permissive

nat — bool
nat — ??{ n:nat | n < 10}
nat — ?7(nat — nat)

(* eztracted as mnat — bool

(*
(*

nat — nat
nat — (nat — mnat)

*)

*)

Conjecture the following types are permissive

nat — ?7(nat — 77 nat)

{ n:nat | n < 10} — 7?77 nat
(nat — 77 nat) — 77 nat
(nat — nat) — 7?7 nat

V A, AxA — 77(list A)

(*
(*
(*
(*
(*

nat — (mnat — mnat)
nat — nat

(nat — mnat) — nat
(nat — mnat) — nat
‘a*’a — (’a list)

*))
*))
*))
*)
*))

A Foreign Function Interface for CoqQ (programming) 7?7
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Embedding Imperative References into CoOQ
Conjecture permissivity of

Record cref{A}:={set: A—?7unit; get: unit—>77A}.

Axiom make_cref: V {A}, A — 77 cref A.

Compatible with OCAML constants of “’a —=> ’a cref”, like

let make_cref x =
let r = ref x in {
set = (fun y -> r := y);
get = (fun () -> !r) }

but also like

let make_cref x =
let h ref [x] in {
set (fun y -> h := y::!h);
get = (fun () -> List.nth !'h (Random.int (List.length 'h))) }

= No formal guarantee on reference contents

except invariant preservations encoded in instances of A.
A Foreign Function Interface for CoqQ (programming) 7?7 16/42
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Permissivity of polymorphism =- unary parametricity

Conjecturing that “V A, A—7?7A" is permissive,

we prove that any safe OCAML “pid:’a -> ’a" satisfies

when (pid x) returns normally some y then y = x.

Proof

LTP 2018

Axiom pid: V A, A—77A.

(¥ We define below cpid:V{B}, B — ?7B %)
Program Definition cpid {B} (x:B): 7? B :=
DO z<+pid {y |l y=x12}x ;;
RET ‘z.

Lemma cpid_correct A (x y:A): (cpid x) ~ y — y=x.

At extraction, we get “let cpid x = (let z = pid x in z)"

= mimicks a “theorems for free” of [Wadler'89]
i.e. a (unary) parametricity proof of [Reynolds'83]

A Foreign Function Interface for CoqQ (programming) 7?7
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Unary parametricity for imperative type-systems

Counter-example : no parametricity with dynamic types a /a Java

<A> A pid(A x) {
if (x instanceof Integer)
return (A) (new Integer (0));
return Xx;

}

» Parametricity comes intuitively from the type-erasure
semantics : polymorphic values must be handled uniformly.

» But, even hard to formally define with higher-order references :
no elementary model of “predicates over recursive heaps” |

» Has been proved for a variant of system F with references by
[Birkedal'11] (from the works of [Ahmed’'02] and [Appel’07]).

» Open Conjecture for “CoqQ + ?7. + OcaML”

A Foreign Function Interface for CoqQ (programming) 7?7 18/42
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Unary Parametricity : ML type — 2"%order invariant

Example deriving a while-loop for CoQ in partial correctness
from a (possibly non-terminating) ML oracle such that
ML type of the oracle = usual rule of Hoare Logic

Given definition of w1i (while-loop-invariant)

Definition wli{S}(cond:S—bool)(body:S—?7S)(I:S—Prop)
:=V s, I s — cond s = true —
V s’, (body s) ~ s’ — I s’.

| aim to define

while {S} cond body (I: S—Prop | wli cond body I):
V s0, ??{s | (I sO — I s) A cond s = falsel}.

Co0Q “Theorems for free" about Polymorphic Foreign Functions 20/42
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Polymorphic oracle for loops
Declaration of the oracle in CoQ

Axiom loop: V {A B}, A *x (A — 7?7 (A+B)) — 7?77 B.

A — invariant i.e. type of “may-reachable states”
B — post-condition i.e. type of “may-final states”

Implem. in OcAML

let rec loop (a, step) =
match step a with
| Coq_inl a’ -> loop (a’, step)
| Coq_inr b -> b

Another implem with recursion from a higher-order reference

let loop (a0, step) =
let fix = ref (fun _ -> failwith "init") in
(fix := fun a -> match step a with
| Coq_inl a’ -> (!fix) a’
| Cog_inr b -> b);
(1fix) a0

CoQ “Theorems for free" about Polymorphic Foreign Functions 21/42
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Definition of the while-loop in C0Q

LTP 2018

Axiom loop: V {A B}, Ax(A — 7?77 (A+B)) — 77 B.

Definition wli{S}(cond:S—bool)(body:S—77?S)(I:S—Prop)
:=V s, I s — cond s = true —
V s’, (body s) ~ s’ — I s’.

Program Definition
while {S} cond body (I:S—Prop | wli cond body I) sO
??{s | (I sO —- I s) A cond s = falsel}

loop (A:={s | I sO — I s})

(s0,

fun s =
match (cond s) with
| true =

DO s’ < mk_annot (body s) ;;

RET (inl (A:={s | I sO — I s }) s?’)
| false =

RET (inr (B:={s | (I sO — I s)

A cond s = false}) s)

end) .

CoQ “Theorems for free" about Polymorphic Foreign Functions
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A simple example using the while-loop in C0OQ

LTP 2018

(¥ Specification of Fibonacci’s numbers by a relation *)
Inductive isfib: Z — Z — Prop :=
| isfib_base p: p < 2 — isfib p 1

(* Internal state of the iterative computation *)
Record iterfib_state := { index: Z; current: Z; old: Z }.

Program Definition iterfib (p:Z): ?7 Z :=

if p <7 2
then RET 1
else
DO s <
while (fun s = s.(index) <7 p) (*
(fun s = RET {| index := s.(index)+1; (*
current := s.(old) + s.(current);
old:= s.(current) |})
(fun s = s.(index) < p (*
A isfib s.(index) s.(current)
A isfib (s.(index)-1) s.(old))

{l index 3; current := 2; old := 1 |};; (*

RET (s.(current)).

(¥ Correctness of the iterative computation *)
Lemma iterfib_correct p r: iterfib p ~ r —isfib p r.

cond
body

| isfib_rec p nl n2: isfib p nl — isfib (p+1) n2 — isfib (p+2) (ni1+n2).

*)
*)

*)

*)

CoQ “Theorems for free" about Polymorphic Foreign Functions
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Generalization to arbitrary recursion operators

For any oracle compatible with

LTP 2018

‘fixp: VvV {A B}, ((A —» ?? B) > A — ?? B) — 2?7 (A — ?7 B).

But, usual reasoning on recursive functions requires
a relation between inputs and outputs.

How to encode a binary relation into the “unary invariant” B?

Solution use in CoQ “(B:=answ R)"” where

Record answ {A 0} (R: A — 0 — Prop) := {
input: A ;
output: 0 ;
correct: R input output

}.

+ a defensive check on each recursive result r that
(input r) “equals to" the actual input of the call

CoQ “Theorems for free" about Polymorphic Foreign Functions
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Such a defensive check is needed...

because of well-typed oracles like

let fixp (step: (’a -> ’b) -> ’a -> ’b): ’a -> ’b =
let memo = ref None in
let rec f x =
match !memo with
| Some y -> y

| None ->
let r = step f x in
memo := Some r;
r
in f

=- a memoized fixpoint with “a bug”
crashing all recursive results into a single memory cell.

Defensive check detects it and raises an exception (as later shown).

CoQ “Theorems for free" about Polymorphic Foreign Functions 25/42
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But any fixp implementation is supported !

Standard fixpoint (== is sufficient in defensive check)

let fixp (step: (’a -> ’b) -> ’a -> ’b): ’a -> ’b =
let rec f x = step f x in £

Memoized fixpoint (require structural equality in defensive check)

let fixp (step: (’a -> ’b) -> ’a -> ’b): ’a -> ’b =
let memo = Hashtbl.create 10 in
let rec f x =
try
Hashtbl.find memo x
with
Not_found ->
let r = step f x in
Hashtbl.replace memo x r;
r
in f

CoQ “Theorems for free" about Polymorphic Foreign Functions 26/42
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Properties of impure higher-order operators “for free”

» (more adhoc) operators for loops and fixpoints

> raising and catching exceptions like in

Axiom fail: V {A}, string — 77 A.

Definition FAILWITH {A} msg: 77 A :=
DO r < fail (A:=False) msg;;
RET (match r with end).

Lemma FAILWITH_correct A msg (P:A — Prop):
V r, FAILWITH msg ~» r — P r.

> a “design pattern” where all oracles
are polymorphic higher-order operators (as soon as it's useful)

CoQ “Theorems for free" about Polymorphic Foreign Functions 27/42
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Certifying boolean SAT-solvers answers (state-of-the-art)

Solution
I 1
1 1 a; = false
1 SAT Answer 1 z3 = true
| Model inDIMACS _format  —p—

Problem SAT \ v12..50 .

Find @),..,25 such Solver input 5 = true

that F': Cy Ao A Clg is 1 Translation of F into / 1

True, where: 1 IMACS format 1
\ p nf 5 10 | Proof

Oy Vs Vg , 123 | Proof of F = false using reso-
lution rule
[} : 1
Cho: a1 VagV -y 1 1
1 145 UNSAT Answer .
A list of lemmas in LRAT

[} format [}
| 11201480 \
! [
I 1
\ 20 0 4 13 19 0 \
1 1
! 1

UNSAT certificates mandatory for SAT compet’ since 2016.
Main format : DRUP/DRAT
Translated by the DRAT-TRIM untrusted checker (written in C)
into the more detailed LRAT-format verified by
a certified checker extracted in C from ACL2
Tool-chain from [Heule et al, 2013-2017].

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 29/42
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Architecture of our SATANSCERT (with T. Vandendorpe)

SAT Answer

DIMACS INPUT

l

F(nl»um

sm )

External C/C++ Ocaml Certified in Coq

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers

UNSAT Answer

ensures [F]m

cnsures
Vi, ~[Flm
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Mean running times of SATANSCERT

SAT with the CADICAL SAT-solver
on the 120 instances of the SAT competition 2018 benchmarks.
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on 306 instances from the SAT competition 2015,2016,2018 benchmarks

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers

29.82% solver

50.13% drat-trim

20.05% satans-cert
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satans-cert
cadical
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Introduction to the correctness of SATANSCERT

Formal proof from CNF abstract syntax :
I/O of SATANSCERT are not verified !

Main written in COQ with statically verified “ASSERT"

Program Definition main: 7?7 unit :=
TRY
DO f < read_input();; (* Command-line + CNF parsing *)
DO a < sat_solver f;; (* solwver (+drat-trim) wrapper *)
match a with
| SAT_Answer mc =
assert_b (satProver f mc) "wrong SAT model";;
ASSERT (3 m, [£f]m);;
println "SAT !"
| UNSAT_Answer =
unsatProver f;;
ASSERT (V m, —[f]m);;
println "UNSAT !"
WITH e =
DO s < exn2string e;;

println ("Certification failure: " +; s).

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 32/42
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Specification of a “simplified” refutation prover

(Boolean) variable x (encoded as a positive).
Literal £ = x or —x.

Clause C £ a finite disjunction of literals
(encoded as a finite set of literals).

CNF F £ a finite conjunction of clauses
(encoded as a list of clauses).

unsatProver (f: list clause): ?? (V m, —[f[m)

In the following, a simplified sketch of the implementation...
Full code on github.com/boulme/satans-cert

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 33/42
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Background on backward resolution proofs (C RUP proofs)
Def given the derivation rules
G G {—\e} UG

Trv — G\G =0 BekRsL G\G = {¢}
C2 C2

We write “Cy,...,C, = C" iff

Ch
TRIV —
Cnfl
BokRsL
G
BcekRsL
C
Thm F is UNSATISFIABLE iff
it exists a sequence of Cy, ..., C, such that
» forall i € [1,n—1], itexists L C FU{Cy,..., Ci—1} with L+ C;

| 4 n:@

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 34/42
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UNSAT certificates from learned clauses

learned clause = RUP lemma found by the CDCL SAT-solver

» DRUP format from CDCL solver
a list of learned claused ended by clause ()

» LRAT format from DRAT-TRIM
for each learned clause C,
a list of previously learned clauses (or axioms) L
such that L+ C
i.e. L is “Backward Resolution Chain learning C"

NB We also support RAT clauses : out the scope of this talk!

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 35/42
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Learned clauses in CoQ from Backward Resolution Chains

On F:(1ist clause), define type cc[F] of “consequences” of F.

Record cc(s:model -Prop): Type :=
{ rep: clause; rep_sat: Vm, s m — [rep|m }.

Then, we define emptyness test :

assertEmpty {s}: cc s — ?7(V m, —-(s m)).

Learning a clause (from a BRC) is defined by

learn: V{s}, list(cc s) — clause — ?7?(cc s)

implemented such that (for “performance” only)
if 1 - c then (learn 1 c) returns ¢’ where (rep c')=c.

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 36/42
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Toward “Logical Consequence Factories” (LCF)

Idea an oracle (=~ a LRAT parser) computes directly “certified
learned clauses” through a certified API (called a LCF).
= No need of an explicit “proof object” (like in old LCF prover) !

For the following benefits

» Backward Resolution Chains are verified “on-the-fly"”,
in the oracle (much easier to debug)

» map of clause identifiers to clause values :
only managed by the oracle (in a efficient hash-table)

» deletion of clauses from memory :
only managed by the oracle.

» very simple & small CoQ code

Dev of whole SatAnsCert in 2 person.months for
1Kloc of CoQ + 1Kloc of OcAML files (including .m11 files)

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 37/42
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Polymorphic LCF style

Declaration of the oracle in CoQ

Definition lcf A := (list A) — clause — 7?77 A.
Axiom lratParse: V {A}, (lcf A)xlist(clause_ident*A) — 7?7 A.

» Data-abstraction is provided by polymorphism !
type “A” is abstract type of learned clauses
type "lcf A" = abstraction of certified BRC checking

» In input, each clause both given as an ident and an abstract
“axiom” of type A.

Implem. of unsatProver in COQ

Definition mkInput (f: list clause):
lcf (ccff]) * list(clause_ident*(cc[f]))

Definition unsatProver f: ?? (V m, —[f[m) :=
DO ¢ + lratParse (mkInput f);;
assertEmpty c.
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3 styles of COQ verified code

Autarkic Skeptical - Certificates Skeptical - LCF Style

Specﬁ ication Specmcanon

Spemf ication

éi T T
a Computations : a |:> i a Factory E
H I Certlflcate H
OCaml L L
= =
1

In this talk Polymorphic LCF style
Oracles computes directly “correct-by-construction” results
through an API certified from Coq
(where type abstraction comes from polymorphism)
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Feedback from the Verified Polyhedra Library

Benefits of switching from “Certificates” to “LCF style".

» Code size on the interface CoQ/OcAML divided by 2 :
shallow versus deep embedding (of certificates).
» Interleaved execution of untrusted and certified computations :
Oracles debugging much easier.

See [Maréchal Phd'17].

Generating certificates still possible from LCF style oracles.
See our CoOQ tactic for learning equalities in linear rational
arithmetic [Boulmé & Maréchal @ ITP'18].
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(Partial) Conclusion

| propose to combine CoQ and OCAML typecheckers to get

Imperative programming with “Theorems for free!"”
and all this for almost free!

Mostly need to understand the meta-theory of this proposal
Is there any motivated type-theorist in the room ?

Conclusions

LTP 2018
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