
Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Embedding Impure & Untrusted ML Oracles
into Coq Verified Code

December 2018

Sylvain.Boulme@univ-grenoble-alpes.fr

1/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Contents

Motivations from CompCert successes and weaknesses

A Foreign Function Interface for Coq (programming) ??

Coq “Theorems for free” about Polymorphic Foreign Functions

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers

Conclusions

Motivations from CompCert successes and weaknesses 2/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

CompCert, the 1st formally proved C compiler

100Kloc of Coq, developed since 2005 by Leroy-et-al at Inria

Major success story of software verification
the “safest C optimizing compiler” from Regher-et-al@PLDI’11
Commercial support since 2015 by AbsInt (German Company)
Compile critical software for Avionics & Nuclear Plants
See Käster-et-al@ERTS’18.

Lesson 1 Focus on proving critical properties (e.g. functional
correctness) instead of non-critical properties (e.g. performance).
Actually, only consider partial correctness.

Lesson 2 Use untrusted oracles when possible

Motivations from CompCert successes and weaknesses 3/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Untrusted oracles in CompCert

Principle : delegate computations to efficient external functions
without having to prove them
⇒ only a checker of the result is verified

i.e. verified defensive programming !

Example of register allocation – a NP-complete problem
• finding a correct and efficient allocation is difficult
• verifying the correctness of an allocation is easy
⇒ only “allocation checking” is verified in Coq

Benefits of untrusted oracles
simplicity + efficiency + modularity

NB oracles needs to appear in Coq as “foreign functions”...

Motivations from CompCert successes and weaknesses 4/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Foreign functions in Coq : an unsound example
Standard method to declare a foreign function in Coq
“Use an axiom declaring its type ; replace this axiom at extraction”

Definition one: nat := (S O).

Axiom oracle : nat → bool.

Lemma congr : oracle one = oracle (S O).
auto.

Qed.

With the Ocaml implementation “let oracle x = (x == one)”
Unsound (oracle one) = true vs (oracle (S O)) = false
Similar behavior with side-effects instead.

NB Ocaml “functions” are not functions in the math sense.
They are rather “non-deterministic functions” (ie “relations”)

P(A× B) ' A→ P(B) where “P(B)” is “B → Prop”

Motivations from CompCert successes and weaknesses 5/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Oracles in CompCert : a soundness issue ?

Oracles are declared as pure functions
Example of register allocation :
Axiom regalloc : RTL.func → option LTL.func.

implemented by imperative Ocaml code using hash-tables.

Not a real issue because
their purity is not used in the compiler proof !

This talk proposes an approach to ensure such a claim...

Motivations from CompCert successes and weaknesses 6/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Limits of some experimental checkers in CompCert

Example of Instruction scheduling (yet another NP-hard pb)
Very elegant translation validation of J-B. Tristan’s PhD (2009).
But still not in CompCert because the checker blows up !

This blow up could be “simply” fixed with hash-consing...
but, require to handle == (pointer equality) in Coq.

This talks provides a formal (partial) axiom about ==
Suffices for a proof of Tristan’s checker with external hash-consing !

Motivations from CompCert successes and weaknesses 7/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Foreign Functions := untrusted oracles (in this talk)
• Embedding of arbitrary imperative ML functions into Coq.
(e.g. aliasing in Coq code is allowed)

• No reasoning on effects, only on returned values.
Intuition : oracles could have bugs, only their type is ensured
⇒ Foreign Functions are non-deterministic...
(e.g. for I/O reasoning, use http://coq.io/ instead)

• Polymorphism to get “theorems-for-free” about
I (some) invariant preservations by mutable data-structures
I arbitrary recursion operators (needs a small defensive test)
I exception-handling
I ...

• Exceptionally : additional axioms (e.g. pointer equality)
In this case, the “oracle” must be trusted !

Motivations from CompCert successes and weaknesses 8/42

http://coq.io/

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Contents

Motivations from CompCert successes and weaknesses

A Foreign Function Interface for Coq (programming) ??

Coq “Theorems for free” about Polymorphic Foreign Functions

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers

Conclusions

A Foreign Function Interface for Coq (programming) ?? 9/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

The (still open) quest of this talk
Define a class “permissive” of Coq types and a class “safe” of
Ocaml values such that

a Coq type T is “permissive” iff
any “safe” value compatible with the extraction of T
is soundly axiomatized in Coq with type T
(for partial correctness)

with “being permissive” and “being safe” automatically checkable
and as expressive as possible !
Could lead to a Coq “Import Constant” construct
Import Constant ident: permissive_type

:= " safe_ocaml_value ".

that acts like “Axiom ident : permissive_type”,
but with additional checks during Coq and Ocaml typechecking.
Example safe=“well-typed” ⇒ “nat→ bool” not permissive.

A Foreign Function Interface for Coq (programming) ?? 10/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

May-return monads [Fouilhé, Boulmé’14]
Axiomatize “P(A)” as type “ ??A”

to represent “impure computations of type A”
and “(k a)” as proposition “k a”

with formal type A: ??A→ A→ Prop
read “computation k may return value a”

Formal operators and axioms
I retA : A→ ??A (interpretable as identity relation)

(ret a1) a2 → a1 =a2
I �=A,B: ??A→ (A→ ??B)→ ??B

(interpretable as the image of a predicate by a relation)
(k1 �= k2) b → ∃a, k1 a ∧ k2 a b

encodes Ocaml “let x = k1 in k2” as “k1 �= (fun x ⇒ k2)”
I mk annotA(k : ??A) : ??{ a | k a}

(returns the True predicate)
NB another interpretation is “ ??A := A” used for extraction !

A Foreign Function Interface for Coq (programming) ?? 11/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Usage of may-return monads

Used to declare oracles in the Verified Polyhedra Library
[Fouilhé, Maréchal, Monniaux, Périn, et. al, 2013-2018]
github.com/VERIMAG-Polyhedra/VPL

However, soundness of VPL design is currently only a conjecture !

Example of Conjecture
“nat→ ?? bool” is permissive for any welltyped Ocaml constant

NB For oracle : nat→ ?? bool the below property is not provable
∀ b b’, (oracle one) b → (oracle (S O)) b’ → b=b ’.

A Foreign Function Interface for Coq (programming) ?? 12/42

github.com/VERIMAG-Polyhedra/VPL

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

The issue of cyclic values

Consider the following Coq type
Inductive empty : Type := Succ: empty → empty .

This type is proved to be empty. (Thm : empty → False).

Then, a function of unit→ ?? empty is proved to never return.

Thus, unit→ ?? empty is not permissive in presence of Ocaml
cyclic values like

let rec loop: empty = Succ loop

My proposal
Add an optional tag on Ocaml type definitions to forbid cyclic
values (typically, for inductive types extracted from Coq).

A Foreign Function Interface for Coq (programming) ?? 13/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Axioms of pointer equality also forbids cyclic values

In presence of the following axioms
Axiom phys_eq : ∀ {A}, A → A → ?? bool.
Axiom phys_eq_true : ∀ A (x y: A),

phys_eq x y true → x=y.

where phys_eq x y is extracted on x==y,
the following Ocaml value is unsound...

let rec fuel: nat = S fuel

since at runtime “pred fuel == fuel”,
whereas it is easy to prove the following Coq goal
Goal ∀ (n:nat), pred n = n → n = O.

and to write a Coq function distinguishing fuel from O.

A Foreign Function Interface for Coq (programming) ?? 14/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Counter-examples and conjectures of “being permissive”

Here “safe” Ocaml functions correspond to
“well-typed” functions (without “obj.magic” tricks)
and without cyclic-values on extracted types.

Counter-Examples the following types are not permissive
nat → bool (* extracted as nat → bool *)
nat → ??{ n:nat | n ≤ 10} (* nat → nat *)
nat → ??(nat → nat) (* nat → (nat → nat) *)

Conjecture the following types are permissive
nat → ??(nat → ?? nat) (* nat → (nat → nat) *)
{ n:nat | n ≤ 10} → ?? nat (* nat → nat *)
(nat → ?? nat) → ?? nat (* (nat → nat) → nat *)
(nat → nat) → ?? nat (* (nat → nat) → nat *)
∀ A, A*A → ??(list A) (* ’a*’a → (’a list) *)

A Foreign Function Interface for Coq (programming) ?? 15/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Embedding Imperative References into Coq
Conjecture permissivity of
Record cref{A}:={ set: A→ ?? unit; get: unit→ ??A}.

Axiom make_cref : ∀ {A}, A → ?? cref A.

Compatible with Ocaml constants of “’a -> ’a cref”, like
let make_cref x =

let r = ref x in {
set = (fun y -> r := y);
get = (fun () -> !r) }

but also like
let make_cref x =

let h = ref [x] in {
set = (fun y -> h := y::!h);
get = (fun () -> List.nth !h (Random .int (List. length !h))) }

⇒ No formal guarantee on reference contents
except invariant preservations encoded in instances of A.

A Foreign Function Interface for Coq (programming) ?? 16/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Permissivity of polymorphism ⇒ unary parametricity
Conjecturing that “∀ A , A→ ??A” is permissive,
we prove that any safe Ocaml “pid:’a -> ’a” satisfies

when (pid x) returns normally some y then y = x.

Proof
Axiom pid: ∀ A, A→ ??A.

(* We define below cpid : ∀ {B}, B → ?? B *)
Program Definition cpid {B} (x:B): ?? B :=

DO z ← pid { y | y = x } x ;;
RET ‘z.

Lemma cpid_correct A (x y:A): (cpid x) y → y=x.

At extraction, we get “let cpid x = (let z = pid x in z)”.

⇒ mimicks a “theorems for free” of [Wadler’89]
i.e. a (unary) parametricity proof of [Reynolds’83]

A Foreign Function Interface for Coq (programming) ?? 17/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Unary parametricity for imperative type-systems
Counter-example : no parametricity with dynamic types a la Java
<A> A pid(A x) {

if (x instanceof Integer)
return (A)(new Integer (0));

return x;
}

I Parametricity comes intuitively from the type-erasure
semantics : polymorphic values must be handled uniformly.

I But, even hard to formally define with higher-order references :
no elementary model of “predicates over recursive heaps” !

I Has been proved for a variant of system F with references by
[Birkedal’11] (from the works of [Ahmed’02] and [Appel’07]).

I Open Conjecture for “Coq + ??. + Ocaml”

A Foreign Function Interface for Coq (programming) ?? 18/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Contents

Motivations from CompCert successes and weaknesses

A Foreign Function Interface for Coq (programming) ??

Coq “Theorems for free” about Polymorphic Foreign Functions

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers

Conclusions

Coq “Theorems for free” about Polymorphic Foreign Functions 19/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Unary Parametricity : ML type → 2nd-order invariant

Example deriving a while-loop for Coq in partial correctness
from a (possibly non-terminating) ML oracle such that
ML type of the oracle ⇒ usual rule of Hoare Logic

Given definition of wli (while-loop-invariant)
Definition wli{S}(cond:S → bool)(body:S → ??S)(I:S → Prop)
:= ∀ s, I s → cond s = true →

∀ s’, (body s) s’ → I s’.

I aim to define
while {S} cond body (I: S → Prop | wli cond body I):

∀ s0 , ??{s | (I s0 → I s) ∧ cond s = false }.

Coq “Theorems for free” about Polymorphic Foreign Functions 20/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Polymorphic oracle for loops
Declaration of the oracle in Coq
Axiom loop: ∀ {A B}, A * (A → ?? (A+B)) → ?? B.{

A 7→ invariant i.e. type of “may-reachable states”
B 7→ post-condition i.e. type of “may-final states”

Implem. in Ocaml
let rec loop (a, step) =

match step a with
| Coq_inl a’ -> loop (a’, step)
| Coq_inr b -> b

Another implem with recursion from a higher-order reference
let loop (a0 , step) =

let fix = ref (fun _ -> failwith "init") in
(fix := fun a -> match step a with

| Coq_inl a’ -> (! fix) a’
| Coq_inr b -> b);

(! fix) a0
Coq “Theorems for free” about Polymorphic Foreign Functions 21/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Definition of the while-loop in Coq
Axiom loop: ∀ {A B}, A*(A → ?? (A+B)) → ?? B.

Definition wli{S}(cond:S→ bool)(body:S→ ??S)(I:S→ Prop)
:= ∀ s, I s → cond s = true →

∀ s’, (body s) s’ → I s ’.

Program Definition
while {S} cond body (I:S→ Prop | wli cond body I) s0
: ??{s | (I s0 → I s) ∧ cond s = false }

:=
loop (A:={s | I s0 → I s})

(s0 ,
fun s ⇒
match (cond s) with
| true ⇒

DO s’ ← mk_annot (body s) ;;
RET (inl (A:={s | I s0 → I s }) s ’)

| false ⇒
RET (inr (B:={s | (I s0 → I s)

∧ cond s = false }) s)
end).

Coq “Theorems for free” about Polymorphic Foreign Functions 22/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

A simple example using the while-loop in Coq

(* Specification of Fibonacci ’s numbers by a relation *)
Inductive isfib : Z → Z → Prop :=

| isfib_base p: p ≤ 2 → isfib p 1
| isfib_rec p n1 n2: isfib p n1 → isfib (p+1) n2 → isfib (p+2) (n1+n2).

(* Internal state of the iterative computation *)
Record iterfib_state := { index : Z; current : Z; old: Z }.

Program Definition iterfib (p:Z): ?? Z :=
if p ≤? 2
then RET 1
else

DO s ←
while (fun s ⇒ s.(index) <? p) (* cond *)

(fun s ⇒ RET {| index := s.(index)+1; (* body *)
current := s.(old) + s.(current);
old := s.(current) |})

(fun s ⇒ s.(index) ≤ p (* I *)
∧ isfib s.(index) s.(current)
∧ isfib (s.(index) -1) s.(old))

{| index := 3; current := 2; old := 1 |};; (* s0 *)
RET (s.(current)).

(* Correctness of the iterative computation *)
Lemma iterfib_correct p r: iterfib p r →isfib p r.

Coq “Theorems for free” about Polymorphic Foreign Functions 23/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Generalization to arbitrary recursion operators
For any oracle compatible with
fixp: ∀ {A B}, ((A → ?? B) → A → ?? B) → ?? (A → ?? B).

But, usual reasoning on recursive functions requires
a relation between inputs and outputs.

How to encode a binary relation into the “unary invariant” B ?

Solution use in Coq “(B :=answ R)” where
Record answ {A O} (R: A → O → Prop) := {

input: A ;
output : O ;
correct : R input output

}.

+ a defensive check on each recursive result r that
(input r) “equals to” the actual input of the call

Coq “Theorems for free” about Polymorphic Foreign Functions 24/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Such a defensive check is needed...

because of well-typed oracles like
let fixp (step: (’a -> ’b) -> ’a -> ’b): ’a -> ’b =

let memo = ref None in
let rec f x =

match !memo with
| Some y -> y
| None ->

let r = step f x in
memo := Some r;
r

in f

⇒ a memoized fixpoint with “a bug”
crashing all recursive results into a single memory cell.

Defensive check detects it and raises an exception (as later shown).

Coq “Theorems for free” about Polymorphic Foreign Functions 25/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

But any fixp implementation is supported !

Standard fixpoint (== is sufficient in defensive check)
let fixp (step: (’a -> ’b) -> ’a -> ’b): ’a -> ’b =

let rec f x = step f x in f

Memoized fixpoint (require structural equality in defensive check)
let fixp (step: (’a -> ’b) -> ’a -> ’b): ’a -> ’b =

let memo = Hashtbl . create 10 in
let rec f x =

try
Hashtbl .find memo x

with
Not_found ->

let r = step f x in
Hashtbl . replace memo x r;
r

in f

Coq “Theorems for free” about Polymorphic Foreign Functions 26/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Properties of impure higher-order operators “for free”

I (more adhoc) operators for loops and fixpoints

I raising and catching exceptions like in
Axiom fail: ∀ {A}, string → ?? A.

Definition FAILWITH {A} msg: ?? A :=
DO r ← fail (A:= False) msg ;;
RET (match r with end).

Lemma FAILWITH_correct A msg (P:A → Prop):
∀ r, FAILWITH msg r → P r.

I a “design pattern” where all oracles
are polymorphic higher-order operators (as soon as it’s useful)

Coq “Theorems for free” about Polymorphic Foreign Functions 27/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Contents

Motivations from CompCert successes and weaknesses

A Foreign Function Interface for Coq (programming) ??

Coq “Theorems for free” about Polymorphic Foreign Functions

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers

Conclusions

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 28/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Certifying boolean SAT-solvers answers (state-of-the-art)

UNSAT certificates mandatory for SAT compet’ since 2016.
Main format : DRUP/DRAT
Translated by the DRAT-trim untrusted checker (written in C)

into the more detailed LRAT-format verified by
a certified checker extracted in C from ACL2

Tool-chain from [Heule et al, 2013-2017].

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 29/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Architecture of our SatAnsCert (with T. Vandendorpe)

SAT Answer UNSAT Answer

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 30/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Mean running times of SatAnsCert
SAT with the CaDiCaL SAT-solver

on the 120 instances of the SAT competition 2018 benchmarks.

 1
0

0
0

 1
0

0
0

0

 1
0

0
0

0
0

 1
x
1

0
6

 1
x
1

0
7

 1
x
1

0
8

R
u
n
n
in

g
 T

im
e
 (

lo
g
)

Number of clauses (log)

cadical
satans-cert

 1
0

0

 1
0

0
0

 1
0

0
0

0

 1
0

0
0

0
0

 1
x
1

0
6

 1
x
1

0
7

R
u
n
n
in

g
 T

im
e
 (

lo
g
)

Number of literals (log)

cadical
satans-cert

UNSAT with both CaDiCaL and CryptoMiniSat SAT-solvers
on 306 instances from the SAT competition 2015,2016,2018 benchmarks

29.82% solver

50.13% drat-trim

20.05% satans-cert

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 31/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Introduction to the correctness of SatAnsCert
Formal proof from CNF abstract syntax :

I/O of SatAnsCert are not verified !

Main written in Coq with statically verified “ASSERT”
Program Definition main: ?? unit :=

TRY
DO f ← read_input ();; (* Command - line + CNF parsing *)
DO a ← sat_solver f;; (* solver (+ drat - trim) wrapper *)
match a with
| SAT_Answer mc ⇒

assert_b (satProver f mc) " wrong SAT model ";;
ASSERT (∃ m, JfK m);;
println "SAT !"

| UNSAT_Answer ⇒
unsatProver f;;
ASSERT (∀ m, ¬JfK m);;
println " UNSAT !"

WITH e ⇒
DO s ← exn2string e;;
println (" Certification failure : " +; s).

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 32/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Specification of a “simplified” refutation prover

(Boolean) variable x (encoded as a positive).

Literal ` , x or ¬x .

Clause C , a finite disjunction of literals
(encoded as a finite set of literals).

CNF F , a finite conjunction of clauses
(encoded as a list of clauses).

unsatProver (f: list clause): ?? (∀ m, ¬JfK m)

In the following, a simplified sketch of the implementation...
Full code on github.com/boulme/satans-cert

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 33/42

github.com/boulme/satans-cert

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Background on backward resolution proofs (⊆ RUP proofs)
Def given the derivation rules

Triv
C1

C2
C1\C2 = ∅ BckRsl

C1 {¬`} ∪ C2

C2
C1\C2 = {`}

We write “C1, . . . , Cn ` C” iff

BckRsl
C1

BckRsl
Cn−1

Triv
Cn

. . .

. . .

C

Thm F is UNSATISFIABLE iff
it exists a sequence of C1, . . . , Cn such that
I forall i ∈ [1, n− 1], it exists L ⊆ F ∪{C1, ..., Ci−1} with L ` Ci
I Cn = ∅

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 34/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

UNSAT certificates from learned clauses

learned clause = RUP lemma found by the CDCL SAT-solver

I DRUP format from CDCL solver
a list of learned claused ended by clause ∅

I LRAT format from DRAT-trim
for each learned clause C ,
a list of previously learned clauses (or axioms) L
such that L ` C
i.e. L is “Backward Resolution Chain learning C”

NB We also support RAT clauses : out the scope of this talk !

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 35/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Learned clauses in Coq from Backward Resolution Chains

On F : (list clause) , define type ccJF K of “consequences” of F .
Record cc(s:model→ Prop): Type :=

{ rep: clause ; rep_sat : ∀ m, s m → JrepK m }.

Then, we define emptyness test :
assertEmpty {s}: cc s → ??(∀ m, ¬(s m)).

Learning a clause (from a BRC) is defined by
learn: ∀{s}, list(cc s) → clause → ??(cc s)

implemented such that (for “performance” only)
if l ` c then (learn l c) returns c ’ where (rep c ’)=c.

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 36/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Toward “Logical Consequence Factories” (LCF)
Idea an oracle (≈ a LRAT parser) computes directly “certified
learned clauses” through a certified API (called a LCF).
⇒ No need of an explicit “proof object” (like in old LCF prover) !

For the following benefits
I Backward Resolution Chains are verified “on-the-fly”,

in the oracle (much easier to debug)
I map of clause identifiers to clause values :

only managed by the oracle (in a efficient hash-table)
I deletion of clauses from memory :

only managed by the oracle.
I very simple & small Coq code

Dev of whole SatAnsCert in 2 person.months for
1Kloc of Coq + 1Kloc of Ocaml files (including .mll files)

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 37/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Polymorphic LCF style
Declaration of the oracle in Coq
Definition lcf A := (list A) → clause → ?? A.
Axiom lratParse : ∀ {A}, (lcf A)* list(clause_ident *A) → ?? A.

I Data-abstraction is provided by polymorphism !
type “A” is abstract type of learned clauses
type “lcf A” = abstraction of certified BRC checking

I In input, each clause both given as an ident and an abstract
“axiom” of type A.

Implem. of unsatProver in Coq
Definition mkInput (f: list clause):

lcf(ccJfK) * list(clause_ident *(ccJfK))
:= . . .

Definition unsatProver f: ?? (∀ m, ¬JfK m) :=
DO c ← lratParse (mkInput f);;
assertEmpty c.

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 38/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Contents

Motivations from CompCert successes and weaknesses

A Foreign Function Interface for Coq (programming) ??

Coq “Theorems for free” about Polymorphic Foreign Functions

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers

Conclusions

Conclusions 39/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

3 styles of Coq verified code

In this talk Polymorphic LCF style
Oracles computes directly “correct-by-construction” results

through an API certified from Coq
(where type abstraction comes from polymorphism)

Conclusions 40/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Feedback from the Verified Polyhedra Library

Benefits of switching from “Certificates” to “LCF style”.
I Code size on the interface Coq/Ocaml divided by 2 :

shallow versus deep embedding (of certificates).
I Interleaved execution of untrusted and certified computations :

Oracles debugging much easier.
See [Maréchal Phd’17].

Generating certificates still possible from LCF style oracles.
See our Coq tactic for learning equalities in linear rational
arithmetic [Boulmé & Maréchal @ ITP’18].

Conclusions 41/42

Imperative ML oracles in Coq S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

(Partial) Conclusion

I propose to combine Coq and Ocaml typecheckers to get

Imperative programming with “Theorems for free !”
and all this for almost free !

Mostly need to understand the meta-theory of this proposal
Is there any motivated type-theorist in the room ?

Conclusions 42/42

	Motivations from CompCert successes and weaknesses
	A Foreign Function Interface for Coq (programming) ??
	Coq ``Theorems for free'' about Polymorphic Foreign Functions
	Certifying Answers of (State-of-the-art) Boolean SAT-Solvers
	Conclusions

