Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Embedding Impure & Untrusted ML Oracles
into CoQ Verified Code

December 2018

Sylvain.Boulme@univ-grenoble-alpes.fr

1/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Contents

Motivations from COMPCERT successes and weaknesses

Motivations from CoMPCERT successes and weaknesses 2/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

CoMPCERT, the 1st formally proved C compiler

100Kloc of CoQ, developed since 2005 by Leroy-et-al at Inria

Major success story of software verification
the “safest C optimizing compiler’ from Regher-et-al@PLDI'11
Commercial support since 2015 by AbsInt (German Company)
Compile critical software for Avionics & Nuclear Plants
See Kaster-et-alOERTS'18.

Lesson 1 Focus on proving critical properties (e.g. functional
correctness) instead of non-critical properties (e.g. performance).
Actually, only consider partial correctness.

Lesson 2 Use untrusted oracles when possible

Motivations from CoMPCERT successes and weaknesses 3/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Untrusted oracles in COMPCERT

Principle : delegate computations to efficient external functions
without having to prove them
= only a checker of the result is verified

i.e. verified defensive programming !

Example of register allocation — a NP-complete problem
e finding a correct and efficient allocation is difficult
o verifying the correctness of an allocation is easy

= only “allocation checking” is verified in CoQ

Benefits of untrusted oracles
simplicity + efficiency + modularity

NB oracles needs to appear in CoQ as “foreign functions”...

Motivations from CoMPCERT successes and weaknesses 4/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France)

Foreign functions in CoQ : an unsound example

Standard method to declare a foreign function in CoQ
“Use an axiom declaring its type; replace this axiom at extraction”

LTP 2018

Definition one: nat := (S 0).
Axiom oracle: nat — bool.
Lemma congr: oracle one = oracle (S 0).

auto.
Qed.

With the OCAML implementation “let oracle x = (x == one)”

Unsound (oracle one) = true vs (oracle (S 0)) = false

Similar behavior with side-effects instead.

NB OcaAML “functions” are not functions in the math sense.
They are rather “non-deterministic functions” (ie “relations”)
P(Ax B) ~ A— P(B) where “P(B)" is “B — Prop"

Motivations from CoMPCERT successes and weaknesses

5/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Oracles in COMPCERT : a soundness issue ?

Oracles are declared as pure functions
Example of register allocation :

Axiom regalloc: RTL.func — option LTL.func.

implemented by imperative OCAML code using hash-tables.

Not a real issue because
their purity is not used in the compiler proof!

This talk proposes an approach to ensure such a claim...

Motivations from CoMPCERT successes and weaknesses 6/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Limits of some experimental checkers in COMPCERT

Example of Instruction scheduling (yet another NP-hard pb)
Very elegant translation validation of J-B. Tristan's PhD (2009).
But still not in CoOMPCERT because the checker blows up!

This blow up could be “simply” fixed with hash-consing...
but, require to handle == (pointer equality) in CoQ.

This talks provides a formal (partial) axiom about ==
Suffices for a proof of Tristan's checker with external hash-consing!

Motivations from CoMPCERT successes and weaknesses 7/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Foreign Functions := untrusted oracles (in this talk)

e Embedding of arbitrary imperative ML functions into CoQ.
(e.g. aliasing in CoQ code is allowed)

e No reasoning on effects, only on returned values.

Intuition : oracles could have bugs, only their type is ensured

= Foreign Functions are non-deterministic...

(e.g. for I/O reasoning, use http://coq.io/ instead)

e Polymorphism to get “theorems-for-free” about
» (some) invariant preservations by mutable data-structures
» arbitrary recursion operators (needs a small defensive test)
> exception-handling

> ...

e Exceptionally : additional axioms (e.g. pointer equality)
In this case, the “oracle” must be trusted !

Motivations from CoMPCERT successes and weaknesses 8/42


http://coq.io/

Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Contents

A Foreign Function Interface for CoQ (programming) 77

A Foreign Function Interface for CoqQ (programming) 7?7 9/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

The (still open) quest of this talk

Define a class "“permissive” of COQ types and a class “safe” of
OcAML values such that

a CoqQ type T is “permissive” iff
any “safe” value compatible with the extraction of T

is soundly axiomatized in CoQ with type T
(for partial correctness)

with “being permissive” and “being safe” automatically checkable
and as expressive as possible !

Could lead to a COQ “Import Constant” construct

Import Constant ident: permissive_type

:= "safe_ocaml_value".

that acts like “Axiom ident: permissive_type’,
but with additional checks during CoQ and OCAML typechecking.

Example safe="well-typed” = “nat-—bool" not permissive.

A Foreign Function Interface for CoqQ (programming) 7?7 10/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

May-return monads [Fouilhé, Boulmé'14]
Axiomatize “P(A)" as type “77A"
to represent “impure computations of type A"
and “(k a)" as proposition “k ~~ a"
with formal type ~»4:7?A — A — Prop
read “computation k may return value a"
Formal operators and axioms

> retp: A—77A (interpretable as identity relation)
(ret al) 3y — ar=ap

> >=,p""A—> (A—=77B) - 7B
(interpretable as the image of a predicate by a relation)

(k1>>:k2)v->b — da,ki~aANkya~b
encodes OCAML “let x = kyinky" as “k; >= (fun x = kp)”

» mk _annota(k : ??7A) :??{a| k ~~ a}
(returns the True predicate)

NB another interpretation is “ 7?A := A" used for extraction!

A Foreign Function Interface for CoqQ (programming) 7?7 11/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Usage of may-return monads

Used to declare oracles in the Verified Polyhedra Library
[Fouilhé, Maréchal, Monniaux, Périn, et. al, 2013-2018]
github.com/VERIMAG-Polyhedra/VPL

However, soundness of VPL design is currently only a conjecture !

Example of Conjecture
“nat — ??bool” is permissive for any welltyped OCAML constant

NB For oracle:nat— ??bool the below property is not provable

V b b’, (oracle one)~b — (oracle (S 0))~b’> — b=b’.

A Foreign Function Interface for CoqQ (programming) 7?7 12/42


github.com/VERIMAG-Polyhedra/VPL

Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

The issue of cyclic values

Consider the following CoOQ type

‘Inductive empty: Type:= Succ: empty — empty. ‘

This type is proved to be empty. (Thm : empty — False).
Then, a function of unit —??empty is proved to never return.

Thus, unit — ??empty is not permissive in presence of OCAML
cyclic values like

let rec loop: empty = Succ loop

My proposal
Add an optional tag on OCAML type definitions to forbid cyclic
values (typically, for inductive types extracted from C0Q).

A Foreign Function Interface for CoqQ (programming) 7?7 13/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Axioms of pointer equality also forbids cyclic values

In presence of the following axioms

Axiom phys_eq: V {A}, A — A — 77 bool.
Axiom phys_eq_true: V A (x y: A),
phys_eq x y ~» true — x=y.

where phys_eq x y is extracted on x==y,
the following OCAML value is unsound...

let rec fuel: nat = S fuel

since at runtime “pred fuel == fuel”,
whereas it is easy to prove the following CoQ goal

Goal V (n:nat), pred n = n — n = 0.

and to write a CoQ function distinguishing fuel from 0.

A Foreign Function Interface for CoqQ (programming) 7?7 14/42



Imperative ML oracles in CoQ

S. Boulmé (Verimag, Grenoble INP, France)

LTP 2018

Counter-examples and conjectures of “being permissive”

Here “safe” OCAML functions correspond to
“well-typed” functions (without “obj.magic"” tricks)
and without cyclic-values on extracted types.

Counter-Examples the following types are not permissive

nat — bool
nat — ??{ n:nat | n < 10}
nat — ?7(nat — nat)

(* eztracted as mnat — bool

(*
(*

nat — nat
nat — (nat — mnat)

*)

*)

Conjecture the following types are permissive

nat — ?7(nat — 77 nat)

{ n:nat | n < 10} — 7?77 nat
(nat — 77 nat) — 77 nat
(nat — nat) — 7?7 nat

V A, AxA — 77(list A)

(*
(*
(*
(*
(*

nat — (mnat — mnat)
nat — nat

(nat — mnat) — nat
(nat — mnat) — nat
‘a*’a — (’a list)

*))
*))
*))
*)
*))

A Foreign Function Interface for CoqQ (programming) 7?7

15/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Embedding Imperative References into CoOQ
Conjecture permissivity of

Record cref{A}:={set: A—?7unit; get: unit—>77A}.

Axiom make_cref: V {A}, A — 77 cref A.

Compatible with OCAML constants of “’a —=> ’a cref”, like

let make_cref x =
let r = ref x in {
set = (fun y -> r := y);
get = (fun () -> !r) }

but also like

let make_cref x =
let h ref [x] in {
set (fun y -> h := y::!h);
get = (fun () -> List.nth !'h (Random.int (List.length 'h))) }

= No formal guarantee on reference contents

except invariant preservations encoded in instances of A.
A Foreign Function Interface for CoqQ (programming) 7?7 16/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France)

Permissivity of polymorphism =- unary parametricity

Conjecturing that “V A, A—7?7A" is permissive,

we prove that any safe OCAML “pid:’a -> ’a" satisfies

when (pid x) returns normally some y then y = x.

Proof

LTP 2018

Axiom pid: V A, A—77A.

(¥ We define below cpid:V{B}, B — ?7B %)
Program Definition cpid {B} (x:B): 7? B :=
DO z<+pid {y |l y=x12}x ;;
RET ‘z.

Lemma cpid_correct A (x y:A): (cpid x) ~ y — y=x.

At extraction, we get “let cpid x = (let z = pid x in z)"

= mimicks a “theorems for free” of [Wadler'89]
i.e. a (unary) parametricity proof of [Reynolds'83]

A Foreign Function Interface for CoqQ (programming) 7?7

17/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Unary parametricity for imperative type-systems

Counter-example : no parametricity with dynamic types a /a Java

<A> A pid(A x) {
if (x instanceof Integer)
return (A) (new Integer (0));
return Xx;

}

» Parametricity comes intuitively from the type-erasure
semantics : polymorphic values must be handled uniformly.

» But, even hard to formally define with higher-order references :
no elementary model of “predicates over recursive heaps” |

» Has been proved for a variant of system F with references by
[Birkedal'11] (from the works of [Ahmed’'02] and [Appel’07]).

» Open Conjecture for “CoqQ + ?7. + OcaML”

A Foreign Function Interface for CoqQ (programming) 7?7 18/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Contents

CoQ “Theorems for free” about Polymorphic Foreign Functions

CoQ “Theorems for free" about Polymorphic Foreign Functions 19/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Unary Parametricity : ML type — 2"%order invariant

Example deriving a while-loop for CoQ in partial correctness
from a (possibly non-terminating) ML oracle such that
ML type of the oracle = usual rule of Hoare Logic

Given definition of w1i (while-loop-invariant)

Definition wli{S}(cond:S—bool)(body:S—?7S)(I:S—Prop)
:=V s, I s — cond s = true —
V s’, (body s) ~ s’ — I s’.

| aim to define

while {S} cond body (I: S—Prop | wli cond body I):
V s0, ??{s | (I sO — I s) A cond s = falsel}.

Co0Q “Theorems for free" about Polymorphic Foreign Functions 20/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Polymorphic oracle for loops
Declaration of the oracle in CoQ

Axiom loop: V {A B}, A *x (A — 7?7 (A+B)) — 7?77 B.

A — invariant i.e. type of “may-reachable states”
B — post-condition i.e. type of “may-final states”

Implem. in OcAML

let rec loop (a, step) =
match step a with
| Coq_inl a’ -> loop (a’, step)
| Coq_inr b -> b

Another implem with recursion from a higher-order reference

let loop (a0, step) =
let fix = ref (fun _ -> failwith "init") in
(fix := fun a -> match step a with
| Coq_inl a’ -> (!fix) a’
| Cog_inr b -> b);
(1fix) a0

CoQ “Theorems for free" about Polymorphic Foreign Functions 21/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France)

Definition of the while-loop in C0Q

LTP 2018

Axiom loop: V {A B}, Ax(A — 7?77 (A+B)) — 77 B.

Definition wli{S}(cond:S—bool)(body:S—77?S)(I:S—Prop)
:=V s, I s — cond s = true —
V s’, (body s) ~ s’ — I s’.

Program Definition
while {S} cond body (I:S—Prop | wli cond body I) sO
??{s | (I sO —- I s) A cond s = falsel}

loop (A:={s | I sO — I s})

(s0,

fun s =
match (cond s) with
| true =

DO s’ < mk_annot (body s) ;;

RET (inl (A:={s | I sO — I s }) s?’)
| false =

RET (inr (B:={s | (I sO — I s)

A cond s = false}) s)

end) .

CoQ “Theorems for free" about Polymorphic Foreign Functions

22/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France)

A simple example using the while-loop in C0OQ

LTP 2018

(¥ Specification of Fibonacci’s numbers by a relation *)
Inductive isfib: Z — Z — Prop :=
| isfib_base p: p < 2 — isfib p 1

(* Internal state of the iterative computation *)
Record iterfib_state := { index: Z; current: Z; old: Z }.

Program Definition iterfib (p:Z): ?7 Z :=

if p <7 2
then RET 1
else
DO s <
while (fun s = s.(index) <7 p) (*
(fun s = RET {| index := s.(index)+1; (*
current := s.(old) + s.(current);
old:= s.(current) |})
(fun s = s.(index) < p (*
A isfib s.(index) s.(current)
A isfib (s.(index)-1) s.(old))

{l index 3; current := 2; old := 1 |};; (*

RET (s.(current)).

(¥ Correctness of the iterative computation *)
Lemma iterfib_correct p r: iterfib p ~ r —isfib p r.

cond
body

| isfib_rec p nl n2: isfib p nl — isfib (p+1) n2 — isfib (p+2) (ni1+n2).

*)
*)

*)

*)

CoQ “Theorems for free" about Polymorphic Foreign Functions

23/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France)

Generalization to arbitrary recursion operators

For any oracle compatible with

LTP 2018

‘fixp: VvV {A B}, ((A —» ?? B) > A — ?? B) — 2?7 (A — ?7 B).

But, usual reasoning on recursive functions requires
a relation between inputs and outputs.

How to encode a binary relation into the “unary invariant” B?

Solution use in CoQ “(B:=answ R)"” where

Record answ {A 0} (R: A — 0 — Prop) := {
input: A ;
output: 0 ;
correct: R input output

}.

+ a defensive check on each recursive result r that
(input r) “equals to" the actual input of the call

CoQ “Theorems for free" about Polymorphic Foreign Functions

24/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Such a defensive check is needed...

because of well-typed oracles like

let fixp (step: (’a -> ’b) -> ’a -> ’b): ’a -> ’b =
let memo = ref None in
let rec f x =
match !memo with
| Some y -> y

| None ->
let r = step f x in
memo := Some r;
r
in f

=- a memoized fixpoint with “a bug”
crashing all recursive results into a single memory cell.

Defensive check detects it and raises an exception (as later shown).

CoQ “Theorems for free" about Polymorphic Foreign Functions 25/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

But any fixp implementation is supported !

Standard fixpoint (== is sufficient in defensive check)

let fixp (step: (’a -> ’b) -> ’a -> ’b): ’a -> ’b =
let rec f x = step f x in £

Memoized fixpoint (require structural equality in defensive check)

let fixp (step: (’a -> ’b) -> ’a -> ’b): ’a -> ’b =
let memo = Hashtbl.create 10 in
let rec f x =
try
Hashtbl.find memo x
with
Not_found ->
let r = step f x in
Hashtbl.replace memo x r;
r
in f

CoQ “Theorems for free" about Polymorphic Foreign Functions 26/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Properties of impure higher-order operators “for free”

» (more adhoc) operators for loops and fixpoints

> raising and catching exceptions like in

Axiom fail: V {A}, string — 77 A.

Definition FAILWITH {A} msg: 77 A :=
DO r < fail (A:=False) msg;;
RET (match r with end).

Lemma FAILWITH_correct A msg (P:A — Prop):
V r, FAILWITH msg ~» r — P r.

> a “design pattern” where all oracles
are polymorphic higher-order operators (as soon as it's useful)

CoQ “Theorems for free" about Polymorphic Foreign Functions 27/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Contents

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 28/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Certifying boolean SAT-solvers answers (state-of-the-art)

Solution
I 1
1 1 a; = false
1 SAT Answer 1 z3 = true
| Model inDIMACS _format  —p—

Problem SAT \ v12..50 .

Find @),..,25 such Solver input 5 = true

that F': Cy Ao A Clg is 1 Translation of F into / 1

True, where: 1 IMACS format 1
\ p nf 5 10 | Proof

Oy Vs Vg , 123 | Proof of F = false using reso-
lution rule
[} : 1
Cho: a1 VagV -y 1 1
1 145 UNSAT Answer .
A list of lemmas in LRAT

[} format [}
| 11201480 \
! [
I 1
\ 20 0 4 13 19 0 \
1 1
! 1

UNSAT certificates mandatory for SAT compet’ since 2016.
Main format : DRUP/DRAT
Translated by the DRAT-TRIM untrusted checker (written in C)
into the more detailed LRAT-format verified by
a certified checker extracted in C from ACL2
Tool-chain from [Heule et al, 2013-2017].

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 29/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France)

LTP 2018

Architecture of our SATANSCERT (with T. Vandendorpe)

SAT Answer

DIMACS INPUT

l

F(nl»um

sm )

External C/C++ Ocaml Certified in Coq

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers

UNSAT Answer

ensures [F]m

cnsures
Vi, ~[Flm

30/42



Imperative ML oracles in CoQ

Mean running times of SATANSCERT

SAT with the CADICAL SAT-solver
on the 120 instances of the SAT competition 2018 benchmarks.

e . oo Se
- R
3 L e
o - s .
. §
g L8
F . L
= N
£ “ ]
2
; ; ;
g g8 g8 3@ % %
E g g £} ) %
g g E kL kL

Number of clauses (log)

U NSAT with both CADICAL and CRYPTOMINISAT SAT-solvers

S. Boulmé (Verimag, Grenoble INP, France)

satans-cert
cadical

Running Time (Iog)

o

N R

100

1000 4

10000 §

100000

Number of literals (log)

1x10° 4

1x107

on 306 instances from the SAT competition 2015,2016,2018 benchmarks

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers

29.82% solver

50.13% drat-trim

20.05% satans-cert

LTP 2018

satans-cert
cadical

31/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Introduction to the correctness of SATANSCERT

Formal proof from CNF abstract syntax :
I/O of SATANSCERT are not verified !

Main written in COQ with statically verified “ASSERT"

Program Definition main: 7?7 unit :=
TRY
DO f < read_input();; (* Command-line + CNF parsing *)
DO a < sat_solver f;; (* solwver (+drat-trim) wrapper *)
match a with
| SAT_Answer mc =
assert_b (satProver f mc) "wrong SAT model";;
ASSERT (3 m, [£f]m);;
println "SAT !"
| UNSAT_Answer =
unsatProver f;;
ASSERT (V m, —[f]m);;
println "UNSAT !"
WITH e =
DO s < exn2string e;;

println ("Certification failure: " +; s).

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 32/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Specification of a “simplified” refutation prover

(Boolean) variable x (encoded as a positive).
Literal £ = x or —x.

Clause C £ a finite disjunction of literals
(encoded as a finite set of literals).

CNF F £ a finite conjunction of clauses
(encoded as a list of clauses).

unsatProver (f: list clause): ?? (V m, —[f[m)

In the following, a simplified sketch of the implementation...
Full code on github.com/boulme/satans-cert

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 33/42


github.com/boulme/satans-cert

Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Background on backward resolution proofs (C RUP proofs)
Def given the derivation rules
G G {—\e} UG

Trv — G\G =0 BekRsL G\G = {¢}
C2 C2

We write “Cy,...,C, = C" iff

Ch
TRIV —
Cnfl
BokRsL
G
BcekRsL
C
Thm F is UNSATISFIABLE iff
it exists a sequence of Cy, ..., C, such that
» forall i € [1,n—1], itexists L C FU{Cy,..., Ci—1} with L+ C;

| 4 n:@

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 34/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

UNSAT certificates from learned clauses

learned clause = RUP lemma found by the CDCL SAT-solver

» DRUP format from CDCL solver
a list of learned claused ended by clause ()

» LRAT format from DRAT-TRIM
for each learned clause C,
a list of previously learned clauses (or axioms) L
such that L+ C
i.e. L is “Backward Resolution Chain learning C"

NB We also support RAT clauses : out the scope of this talk!

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 35/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Learned clauses in CoQ from Backward Resolution Chains

On F:(1ist clause), define type cc[F] of “consequences” of F.

Record cc(s:model -Prop): Type :=
{ rep: clause; rep_sat: Vm, s m — [rep|m }.

Then, we define emptyness test :

assertEmpty {s}: cc s — ?7(V m, —-(s m)).

Learning a clause (from a BRC) is defined by

learn: V{s}, list(cc s) — clause — ?7?(cc s)

implemented such that (for “performance” only)
if 1 - c then (learn 1 c) returns ¢’ where (rep c')=c.

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 36/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018
Toward “Logical Consequence Factories” (LCF)

Idea an oracle (=~ a LRAT parser) computes directly “certified
learned clauses” through a certified API (called a LCF).
= No need of an explicit “proof object” (like in old LCF prover) !

For the following benefits

» Backward Resolution Chains are verified “on-the-fly"”,
in the oracle (much easier to debug)

» map of clause identifiers to clause values :
only managed by the oracle (in a efficient hash-table)

» deletion of clauses from memory :
only managed by the oracle.

» very simple & small CoQ code

Dev of whole SatAnsCert in 2 person.months for
1Kloc of CoQ + 1Kloc of OcAML files (including .m11 files)

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 37/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Polymorphic LCF style

Declaration of the oracle in CoQ

Definition lcf A := (list A) — clause — 7?77 A.
Axiom lratParse: V {A}, (lcf A)xlist(clause_ident*A) — 7?7 A.

» Data-abstraction is provided by polymorphism !
type “A” is abstract type of learned clauses
type "lcf A" = abstraction of certified BRC checking

» In input, each clause both given as an ident and an abstract
“axiom” of type A.

Implem. of unsatProver in COQ

Definition mkInput (f: list clause):
lcf (ccff]) * list(clause_ident*(cc[f]))

Definition unsatProver f: ?? (V m, —[f[m) :=
DO ¢ + lratParse (mkInput f);;
assertEmpty c.

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers 38/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Contents

Conclusions

Conclusions 39/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

3 styles of COQ verified code

Autarkic Skeptical - Certificates Skeptical - LCF Style

Specﬁ ication Specmcanon

Spemf ication

éi T T
a Computations : a |:> i a Factory E
H I Certlflcate H
OCaml L L
= =
1

In this talk Polymorphic LCF style
Oracles computes directly “correct-by-construction” results
through an API certified from Coq
(where type abstraction comes from polymorphism)

Conclusions 40/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France) LTP 2018

Feedback from the Verified Polyhedra Library

Benefits of switching from “Certificates” to “LCF style".

» Code size on the interface CoQ/OcAML divided by 2 :
shallow versus deep embedding (of certificates).
» Interleaved execution of untrusted and certified computations :
Oracles debugging much easier.

See [Maréchal Phd'17].

Generating certificates still possible from LCF style oracles.
See our CoOQ tactic for learning equalities in linear rational
arithmetic [Boulmé & Maréchal @ ITP'18].

Conclusions 41/42



Imperative ML oracles in CoQ S. Boulmé (Verimag, Grenoble INP, France)

(Partial) Conclusion

| propose to combine CoQ and OCAML typecheckers to get

Imperative programming with “Theorems for free!"”
and all this for almost free!

Mostly need to understand the meta-theory of this proposal
Is there any motivated type-theorist in the room ?

Conclusions

LTP 2018

42/42



	Motivations from CompCert successes and weaknesses
	A Foreign Function Interface for Coq (programming) ??
	Coq ``Theorems for free'' about Polymorphic Foreign Functions
	Certifying Answers of (State-of-the-art) Boolean SAT-Solvers
	Conclusions

