Embedding Impure & Untrusted $\rm ML$ Oracles into $\rm Coq$ Verified Code

December 2018

Sylvain.Boulme@univ-grenoble-alpes.fr

Contents

Motivations from $\operatorname{COMPCERT}$ successes and weaknesses

A Foreign Function Interface for Coq (programming) ??

 Co_{Q} "Theorems for free" about Polymorphic Foreign Functions

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers

Conclusions

Motivations from COMPCERT successes and weaknesses

$\operatorname{COMPCERT}$, the 1st formally proved C compiler

100 Kloc of $\mathrm{Coq},$ developed since 2005 by Leroy-et-al at Inria

Major success story of software verification

the "*safest C optimizing compiler*" from Regher-et-al@PLDI'11 Commercial support since 2015 by AbsInt (German Company) Compile critical software for Avionics & Nuclear Plants See Käster-et-al@ERTS'18.

Lesson 1 Focus on proving *critical* properties (e.g. functional correctness) instead of *non-critical* properties (e.g. performance). Actually, only consider **partial correctness**.

Lesson 2 Use *untrusted* oracles when possible

Untrusted oracles in $\operatorname{COMPCERT}$

Principle : delegate computations to efficient external functions without having to prove them

- \Rightarrow only a checker of the result is verified
 - i.e. verified defensive programming !

Example of register allocation – a NP-complete problem

- finding a correct and efficient allocation is difficult
- verifying the *correctness* of an allocation is easy
- \Rightarrow only "allocation checking" is verified in Coq

Benefits of untrusted oracles

simplicity + efficiency + modularity

 $\boldsymbol{\mathsf{NB}}$ oracles needs to appear in COQ as "foreign functions"...

Foreign functions in COQ : an unsound example

Standard method to declare a foreign function in COQ "Use an axiom declaring its type; replace this axiom at extraction"

```
Definition one: nat := (S 0).

Axiom oracle: nat \rightarrow bool.

Lemma congr: oracle one = oracle (S 0).

auto.

Qed.
```

With the OCAML implementation "let oracle x = (x == one)"

Unsound (oracle one) = true vs (oracle (S 0)) = false Similar behavior with side-effects instead.

NB OCAML "functions" are not functions in the math sense. They are rather "non-deterministic functions" (ie "relations") $\mathbb{P}(A \times B) \simeq A \rightarrow \mathbb{P}(B)$ where " $\mathbb{P}(B)$ " is " $B \rightarrow \mathbf{Prop}$ "

Oracles in COMPCERT : a soundness issue?

Oracles are declared as pure functions Example of register allocation :

Axiom regalloc: RTL.func \rightarrow option LTL.func.

implemented by imperative OCAML code using hash-tables.

Not a real issue because their purity is not used in the compiler proof!

This talk proposes an approach to ensure such a claim...

Limits of some experimental checkers in COMPCERT

Example of **Instruction scheduling** (yet another NP-hard pb) Very elegant **translation validation** of J-B. Tristan's PhD (2009). But still not in COMPCERT because the checker blows up!

This blow up could be "simply" fixed with hash-consing... but, require to handle == (pointer equality) in Coq.

This talks provides a formal (partial) axiom about == Suffices for a proof of Tristan's checker with external hash-consing !

Foreign Functions := *untrusted* oracles (in this talk)

- \bullet Embedding of arbitrary imperative ML functions into $\mathrm{Coq.}$ (e.g. aliasing in Coq code is allowed)
- No reasoning on *effects*, only on returned values.
 Intuition : *oracles* could have bugs, only their type is ensured
 ⇒ Foreign Functions are non-deterministic...
 (e.g. for I/O reasoning, use http://coq.io/ instead)
- Polymorphism to get "theorems-for-free" about
 - (some) invariant preservations by mutable data-structures
 - arbitrary recursion operators (needs a small defensive test)
 - exception-handling
 - ► ...
- Exceptionally : additional axioms (e.g. pointer equality) In this case, the "*oracle*" must be trusted !

Contents

Motivations from $\operatorname{COMPCERT}$ successes and weaknesses

A Foreign Function Interface for Coq (programming) ??

 Co_{Q} "Theorems for free" about Polymorphic Foreign Functions

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers

Conclusions

A Foreign Function Interface for COQ (programming) ??

The (still open) quest of this talk

Define a class "permissive" of $\rm COQ$ types and a class "safe" of $\rm OCAML$ values such that

a COQ type T is "permissive" iff any "safe" value compatible with the extraction of T is soundly axiomatized in COQ with type T (for partial correctness)

with "*being permissive*" and "*being safe*" automatically checkable and as expressive as possible !

Could lead to a COQ "Import <code>Constant</code>" construct

Import Constant ident: permissive_type
 := "safe_ocaml_value".

that acts like "Axiom ident: permissive_type", but with additional checks during COQ and OCAML typechecking.

 $\textbf{Example} \quad \textit{safe}=\texttt{``well-typed''} \quad \Rightarrow \quad \texttt{``nat} \rightarrow \texttt{bool''} \text{ not } \textit{permissive}.$

May-return monads [Fouilhé, Boulmé'14] Axiomatize " $\mathbb{P}(A)$ " as type "??A" to represent "*impure computations of type A*" and " $(k \ a)$ " as proposition " $k \rightarrow a$ " with formal type \rightsquigarrow_A :?? $A \rightarrow A \rightarrow Prop$ read "*computation k may return value a*" Formal operators and axioms

ret_A: A → ??A (interpretable as identity relation) (ret a₁) → a₂ → a₁ = a₂
≫=_{A,B}: ??A → (A → ??B) → ??B (interpretable as the image of a predicate by a relation) (k₁ ≫= k₂) → b → ∃a, k₁ → a ∧ k₂ a → b encodes OCAML "let x = k₁ in k₂" as "k₁ ≫= (fun x ⇒ k₂)"
mk_annot_A(k :??A) :??{ a | k → a} (returns the True predicate)

NB another interpretation is "??A := A" used for extraction ! A Foreign Function Interface for Coq (programming) ??

Usage of may-return monads

Used to declare oracles in the Verified Polyhedra Library [Fouilhé, Maréchal, Monniaux, Périn, et. al, 2013-2018] github.com/VERIMAG-Polyhedra/VPL

However, soundness of VPL design is currently only a conjecture !

Example of Conjecture

<code>"nat \rightarrow ??bool"</code> is *permissive* for any welltyped OCAML constant

NB For oracle:nat \rightarrow ??bool the below property is not provable

 \forall b b', (oracle one) $\leadsto b$ \rightarrow (oracle (S O)) $\leadsto b$ ' \rightarrow b=b'.

The issue of cyclic values

```
Consider the following \operatorname{COQ} type
```

```
\label{eq:inductive} \texttt{Inductive} \ \texttt{empty: Type:= Succ: empty} \ \rightarrow \ \texttt{empty}.
```

This type is proved to be empty. (Thm : empty \rightarrow False).

Then, a function of $\texttt{unit} \rightarrow ?? \texttt{empty}$ is proved to never return.

Thus, $\mathtt{unit} \to \ref{empty}$ is not permissive in presence of OCAML cyclic values like

let rec loop: empty = Succ loop

My proposal

Add an optional tag on OCAML type definitions to **forbid** cyclic values (typically, for inductive types extracted from COQ).

Axioms of pointer equality also forbids cyclic values

In presence of the following axioms

```
Axiom phys_eq: \forall {A}, A \rightarrow A \rightarrow ?? bool.
Axiom phys_eq_true: \forall A (x y: A),
phys_eq x y \rightarrow true \rightarrow x=y.
```

where phys_eq x y is extracted on x==y, the following OCAML value is unsound...

```
let rec fuel: nat = S fuel
```

since at runtime "pred fuel == fuel",
whereas it is easy to prove the following COQ goal

Goal \forall (n:nat), pred n = n \rightarrow n = 0.

and to write a Coq function distinguishing <code>fuel</code> from <code>O</code>.

Counter-examples and conjectures of "being permissive"

Counter-Examples the following types are not permissive

nat	\rightarrow	bool	(*	extracted as	n	$at \rightarrow$	bool	*)
nat	\rightarrow	??{ n:nat n \leq 10}	(*	nat	\rightarrow	nat		*)
nat	\rightarrow	??(nat $ ightarrow$ nat)	(*	nat	\rightarrow	(nat	ightarrow nat)	*)

Conjecture the following types are permissive

nat $ ightarrow$??(nat $ ightarrow$?? nat)	(*	$\textit{nat} \ ightarrow \textit{(nat} \ ightarrow \textit{nat)}$	*)
{ n:nat n \leq 10} \rightarrow ?? nat	(*	$\textit{nat} \ ightarrow \textit{nat}$	*)
(nat $ ightarrow$?? nat) $ ightarrow$?? nat	(*	(nat $ ightarrow$ nat) $ ightarrow$ nat	*)
(nat $ ightarrow$ nat) $ ightarrow$?? nat	(*	(nat \rightarrow nat) \rightarrow nat	*)
\forall A, A*A \rightarrow ??(list A)	(*	'a*'a $ ightarrow$ ('a list)	*)

$\begin{array}{c} \mbox{Embedding Imperative References into COQ} \\ \mbox{Conjecture permissivity of} \end{array}$

Record cref{A}:={set: $A \rightarrow ??$ unit; get: unit $\rightarrow ??A$ }.

Axiom make_cref: \forall {A}, A \rightarrow ?? cref A.

Compatible with OCAML constants of "'a -> 'a cref", like

```
let make_cref x =
    let r = ref x in {
        set = (fun y -> r := y);
        get = (fun () -> !r) }
but also like
let make_cref x =
    let h = ref [x] in {
        set = (fun y -> h := y::!h);
        get = (fun () -> List.nth !h (Random.int (List.length !h))) }
```

 \Rightarrow No formal guarantee on reference contents except **invariant preservations** encoded in **instances** of A.

A Foreign Function Interface for COQ (programming) ??

Permissivity of polymorphism \Rightarrow unary parametricity

Conjecturing that " \forall A, A \rightarrow ?? A" is permissive, we prove that any *safe* OCAML "pid:'a -> 'a" satisfies when (pid x) returns normally some y then y = x.

Proof

```
Axiom pid: \forall A, A \rightarrow ??A.

(* We define below cpid: \forall \{B\}, B \rightarrow ??B *)

Program Definition cpid \{B\} (x:B): ?? B :=

D0 z \leftarrow pid { y | y = x } x ;;

RET 'z.

Lemma cpid_correct A (x y:A): (cpid x) \rightsquigarrow y \rightarrow y=x.
```

At extraction, we get "let cpid x = (let z = pid x in z)".

⇒ mimicks a "theorems for free" of [Wadler'89] i.e. a (unary) parametricity proof of [Reynolds'83]

Unary parametricity for imperative type-systems

Counter-example : no parametricity with dynamic types a la Java

```
<A> A pid(A x) {
    if (x instanceof Integer)
        return (A)(new Integer(0));
    return x;
}
```

- Parametricity comes *intuitively* from the type-erasure semantics : polymorphic values must be handled uniformly.
- But, even hard to formally define with higher-order references : no elementary model of "predicates over recursive heaps" !
- Has been proved for a variant of system F with references by [Birkedal'11] (from the works of [Ahmed'02] and [Appel'07]).
- ▶ **Open Conjecture** for "COQ + ??. + OCAML"

Contents

Motivations from $\operatorname{COMPCERT}$ successes and weaknesses

A Foreign Function Interface for Coq (programming) ??

$\mathrm{Coq}\ \mbox{``Theorems}$ for free'' about Polymorphic Foreign Functions

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers

Conclusions

Unary Parametricity : ML type $\rightarrow 2^{nd}$ -order invariant

Example deriving a while-loop for COQ in partial correctness from a (possibly non-terminating) ML oracle such that ML type of the oracle \Rightarrow usual rule of Hoare Logic

Given definition of wli (while-loop-invariant)

I aim to define

while {S} cond body (I: $S \rightarrow Prop$ | wli cond body I): \forall s0, ??{s | (I s0 \rightarrow I s) \land cond s = false}.

Polymorphic oracle for loops

Declaration of the oracle in Coq

Axiom loop: \forall {A B}, A * (A \rightarrow ?? (A+B)) \rightarrow ?? B.

 $\left\{ \begin{array}{ll} A\mapsto \text{invariant} & \text{i.e. type of ``may-reachable states''} \\ B\mapsto \text{post-condition} & \text{i.e. type of ``may-final states''} \end{array} \right.$

Implem. in OCAML

```
let rec loop (a, step) =
  match step a with
    | Coq_inl a' -> loop (a', step)
    | Coq_inr b -> b
```

Another implem with recursion from a higher-order reference

 $\mathrm{Coq}\ "Theorems$ for free" about Polymorphic Foreign Functions

Definition of the while-loop in COQ

Axiom loop: \forall {A B}, A*(A \rightarrow ?? (A+B)) \rightarrow ?? B.

```
Definition wli{S}(cond:S\rightarrowbool)(body:S\rightarrow??S)(I:S\rightarrowProp)
:= \forall s, I s \rightarrow cond s = true \rightarrow
                  \forall s', (body s) \rightsquigarrow s' \rightarrow I s'.
Program Definition
  while {S} cond body (I:S\rightarrowProp | wli cond body I) s0
   : ??{s | (I s0 \rightarrow I s) \land cond s = false}
:=
  loop (A:={s | I s0 \rightarrow I s})
          (s0.
              fun s \Rightarrow
              match (cond s) with
              | true \Rightarrow
                  DO s' \leftarrow mk_annot (body s) ;;
                  RET (inl (A:={s | I s0 \rightarrow I s }) s')
              | false \Rightarrow
                  RET (inr (B:={s | (I s0 \rightarrow I s)
                                            \land cond s = false}) s)
              end).
```

A simple example using the while-loop in COQ

```
(* Specification of Fibonacci's numbers by a relation *)
Inductive isfib: Z \rightarrow Z \rightarrow Prop :=
| isfib_base p: p < 2 \rightarrow isfib p 1
 | isfib rec p n1 n2: isfib p n1 \rightarrow isfib (p+1) n2 \rightarrow isfib (p+2) (n1+n2).
(* Internal state of the iterative computation *)
Record iterfib_state := { index: Z; current: Z; old: Z }.
Program Definition iterfib (p:Z): ?? Z :=
  if p <? 2
  then RET 1
  else
    D0 s ←
      while (fun s \Rightarrow s.(index) <? p)
                                                                        (* cond *)
             (fun s \Rightarrow RET {| index := s.(index)+1;
                                                                        (* bodu *)
                                 current := s.(old) + s.(current);
                                old:= s.(current) |})
                                                                         (* T *)
             (fun s \Rightarrow s.(index) < p
                        ∧ isfib s.(index) s.(current)
                        \land isfib (s.(index)-1) s.(old))
             {| index := 3; current := 2; old := 1 |};;
                                                                        (* s0 *)
    RET (s.(current)).
(* Correctness of the iterative computation *)
Lemma iterfib correct p r: iterfib p \rightsquigarrow r \rightarrow isfib p r.
```

Generalization to arbitrary recursion operators

For any oracle compatible with

fixp: \forall {A B}, ((A \rightarrow ?? B) \rightarrow A \rightarrow ?? B) \rightarrow ?? (A \rightarrow ?? B).

But, usual reasoning on **recursive functions** requires a **relation** between inputs and outputs.

How to encode a *binary* relation into the "unary invariant" B?

Solution use in COQ "(B:=answ R)" where

```
Record answ {A O} (R: A \rightarrow O \rightarrow Prop) := {
input: A ;
output: O ;
correct: R input output
}.
```

+ a defensive check on each recursive result r that (input r) "equals to" the actual input of the call

Such a defensive check is needed...

```
because of well-typed oracles like
let fixp (step: ('a -> 'b) -> 'a -> 'b): 'a -> 'b =
  let memo = ref None in
  let rec f x =
    match !memo with
    | Some y -> y
    | None ->
       let r = step f x in
       memo := Some r:
       r
  in f
    \Rightarrow a memoized fixpoint with "a bug"
         crashing all recursive results into a single memory cell.
```

Defensive check detects it and raises an exception (as later shown).

But any fixp implementation is supported !

```
Standard fixpoint (== is sufficient in defensive check)
let fixp (step: ('a -> 'b) -> 'a -> 'b): 'a -> 'b =
let rec f x = step f x in f
```

Memoized fixpoint (require structural equality in defensive check)

```
let fixp (step: ('a -> 'b) -> 'a -> 'b): 'a -> 'b =
let memo = Hashtbl.create 10 in
let rec f x =
   try
    Hashtbl.find memo x
with
   Not_found ->
    let r = step f x in
    Hashtbl.replace memo x r;
   r
in f
```

Properties of impure higher-order operators "for free"

- (more adhoc) operators for loops and fixpoints
- raising and catching exceptions like in

```
Axiom fail: \forall {A}, string \rightarrow ?? A.

Definition FAILWITH {A} msg: ?? A :=

D0 r \leftarrow fail (A:=False) msg;;

RET (match r with end).

Lemma FAILWITH_correct A msg (P:A \rightarrow Prop):

\forall r, FAILWITH msg \rightsquigarrow r \rightarrow P r.
```

 a "design pattern" where all oracles are polymorphic higher-order operators (as soon as it's useful)

Contents

Motivations from $\operatorname{COMPCERT}$ successes and weaknesses

A Foreign Function Interface for Coq (programming) ??

 Co_{Q} "Theorems for free" about Polymorphic Foreign Functions

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers

Conclusions

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers

Certifying boolean SAT-solvers answers (state-of-the-art)

UNSAT certificates mandatory for SAT compet' since 2016.
Main format : DRUP/DRAT
Translated by the DRAT-TRIM untrusted checker (written in C) into the more detailed LRAT-format verified by a *certified* checker *extracted in* C *from* ACL2
Tool-chain from [Heule et al, 2013-2017].

Architecture of our SATANSCERT (with T. Vandendorpe)

Mean running times of $\operatorname{SatAnsCert}$

on the 120 instances of the SAT competition 2018 benchmarks.

Introduction to the correctness of $\operatorname{SatAnsCert}$

Formal proof from CNF abstract syntax : I/O of SATANSCERT are not verified !

Main written in COQ with statically verified "ASSERT"

```
Program Definition main: ?? unit :=
  TRY
    D0 f \leftarrow read_input();; (* Command-line + CNF parsing *)
    DO a \leftarrow sat_solver f;; (* solver(+drat-trim) wrapper *)
    match a with
    | SAT_Answer mc \Rightarrow
       assert_b (satProver f mc) "wrong SAT model";;
       ASSERT (\exists m, [f]]m);;
       println "SAT !"
    | UNSAT Answer \Rightarrow
       unsatProver f::
       ASSERT (\forall m, \neg[f]m);;
       println "UNSAT !"
  WITH e \Rightarrow
    DO s \leftarrow exn2string e;;
    println ("Certification failure: " +; s).
```

Specification of a "simplified" refutation prover

(Boolean) variable x (encoded as a positive).

Literal $\ell \triangleq x$ or $\neg x$.

Clause $C \triangleq$ a finite disjunction of literals (encoded as a finite set of literals).

CNF $F \triangleq$ a finite conjunction of clauses (encoded as a list of clauses).

unsatProver (f: list clause): ?? ($\forall m, \neg [\![f]\!]m$)

In the following, a simplified sketch of the implementation... Full code on github.com/boulme/satans-cert

Background on backward resolution proofs (\subseteq RUP proofs) Def given the derivation rules

$$\text{Triv} \ \frac{C_1}{C_2} \ C_1 \backslash C_2 = \emptyset \qquad \qquad \text{Bckrsl} \ \frac{C_1 \qquad \left\{ \neg \ell \right\} \cup C_2}{C_2} \ C_1 \backslash C_2 = \{\ell\}$$

We write " $C_1, \ldots, C_n \vdash C$ " iff

Thm *F* is UNSATISFIABLE iff it exists a sequence of C_1, \ldots, C_n such that

▶ forall $i \in [1, n-1]$, it exists $L \subseteq F \cup \{C_1, ..., C_{i-1}\}$ with $L \vdash C_i$ ▶ $C_n = \emptyset$

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers

UNSAT certificates from learned clauses

 $\mathsf{learned}\ \mathsf{clause} = \mathsf{RUP}\ \mathsf{lemma}\ \mathsf{found}\ \mathsf{by}\ \mathsf{the}\ \mathsf{CDCL}\ \mathsf{SAT}\mathsf{-}\mathsf{solver}$

DRUP format from CDCL solver a list of learned claused ended by clause Ø

► LRAT format from DRAT-TRIM for each learned clause C, a list of *previously* learned clauses (or axioms) L such that L ⊢ C i.e. L is "Backward Resolution Chain learning C"

 $\boldsymbol{\mathsf{NB}}$ We also support RAT clauses : out the scope of this talk !

Learned clauses in Coq from Backward Resolution Chains

On F:(list clause), define type cc[F] of "consequences" of F.

Record cc(s:model \rightarrow **Prop**): Type :=

 $\{ \text{ rep: clause; rep_sat: } \forall \text{ m, s m} \rightarrow [\![\text{rep}]\!] \text{ m } \}.$

Then, we define emptyness test :

assertEmpty {s}: cc s \rightarrow ??(\forall m, \neg (s m)).

Learning a clause (from a BRC) is defined by

learn: \forall {s}, list(cc s) \rightarrow clause \rightarrow ??(cc s)

implemented such that (for "performance" only) if $l \vdash c$ then (learn 1 c) returns c' where (rep c')=c.

Toward "Logical Consequence Factories" (LCF)

Idea an oracle (\approx a LRAT parser) computes directly "certified learned clauses" through a certified API (called a LCF). \Rightarrow No need of an explicit "proof object" (like in old LCF prover)!

For the following benefits

- Backward Resolution Chains are verified "on-the-fly", in the oracle (much easier to debug)
- map of *clause identifiers* to *clause values* : only managed by the oracle (in a efficient hash-table)
- deletion of clauses from memory : only managed by the oracle.
- very simple & small COQ code

Dev of whole SatAnsCert in 2 person.months for 1Kloc of COQ + 1Kloc of OCAML files (including .mll files)

Polymorphic LCF style

Declaration of the oracle in Coq

- Data-abstraction is provided by polymorphism ! type "A" is abstract type of *learned clauses* type "lcf A" = abstraction of certified BRC checking
- In input, each clause both given as an ident and an abstract "axiom" of type A.

Implem. of unsatProver in Coq

```
Definition mkInput (f: list clause):
   lcf(cc[[f]]) * list(clause_ident*(cc[[f]]))
:= ...
Definition unsatProver f: ?? (∀ m, ¬[[f]]m) :=
   D0 c ← lratParse (mkInput f);;
   assertEmpty c.
```

Contents

Motivations from $\operatorname{COMPCERT}$ successes and weaknesses

A Foreign Function Interface for COQ (programming) ??

 Co_{Q} "Theorems for free" about Polymorphic Foreign Functions

Certifying Answers of (State-of-the-art) Boolean SAT-Solvers

Conclusions

3 styles of COQ verified code

In this talk Polymorphic LCF style

Oracles computes directly "correct-by-construction" results through an API certified from Coq (where type abstraction comes from polymorphism)

Feedback from the Verified Polyhedra Library

Benefits of switching from "Certificates" to "LCF style".

- Code size on the interface COQ/OCAML divided by 2 : shallow versus deep embedding (of certificates).
- Interleaved execution of untrusted and certified computations : Oracles debugging much easier.

See [Maréchal Phd'17].

Generating certificates still possible from LCF style oracles. See our COQ tactic for learning equalities in linear rational arithmetic [Boulmé & Maréchal @ ITP'18].

I propose to combine COQ and OCAML typecheckers to get

Imperative programming with "Theorems for free!" and all this for *almost* free!

Mostly need to understand the meta-theory of this proposal Is there any motivated type-theorist in the room ?