Building some Finite Models of Projective Space Geometry in Coq

© David Richter - Western Michigan University

Nicolas Magaud
groupe LTP (GDR GPL) - 6 dec. 2018

Outline

(1) Motivations and Context
(2) Examples pg(3,2) and $\mathrm{pg}(3,3)$
(3) Coq specifications
(4) Proof Optimizations
(5) Results and Future Work

Projective Space Geometry

- Incidence Geometry
- points, lines and an incidence relation
- Projective Incidence Geometry
- in 2D : 2 lines always intersect
- in 3D : Pasch's axiom
- Simple description : only 6 axioms
- Finite Models in Coq
- focusing on 3D models : pg(3,2), ...
- taking Coq to its limits (w.r.t. specification and w.r.t. proof)

Objects and Operations

- Objects : Point, Line

```
Parameter Point, Line : Type.
```

- Incidence relation : incid_lp

```
Parameter incid_lp : Point -> Line -> bool.
```

- Boolean equalities on points and lines : eqP, eqL

```
Parameter eqP : Point -> Point -> bool.
Parameter eqL : Line -> Line -> bool.
```

- All distinct for points and lines : dist_3p, dist_4p, dist_3I

```
Definition dist_3p (A B C :Point) : bool :=
(negb (eqP A B)) && (negb (eqP A C)) && (negb (eqP B C)).
Definition dist_4p (A B C D:Point) : bool := ...
Definition dist_3l (A B C :Line) : bool := ...
```

- Intersection of 2 lines : Intersect_In

```
Definition Intersect_In (11 12 :Line) (P:Point) :=
incid_lp P l1 && incid_lp P 12.
```


Axioms for Projective Space Geometry : from a geometry point of view

- a1 : throught 2 points, there is one line.
- uniqueness : Given 2 points and 2 lines, if the 2 points are both on both lines, either the points are equal, or the lines.
- a2: Pasch's axiom (if 2 lines intersect. . .).
- a3_1 : Each line has at least 3 points.
- a3_2 : There exists 2 lines which do not intersect (dim>2).
- a3_3 : Given 3 distinct lines, there exists a fourth one which intersects with all three ($\mathrm{dim}<=3$).

Axioms for Projective Space Geometry : from a geometry point of view

- Pasch's axiom

Axioms for Projective Space Geometry : from a geometry point of view

```
Axiom al_exists : forall A B : Point, { l : Line| incid_lp A l && incid_lp B l}.
Axiom uniqueness : forall (A B :Point)(l1 12:Line),
incid_lp A l1 -> incid_lp B l1 -> incid_lp A 12 -> incid_lp B l2 -> A = B \/ l1 = 12.
Axiom a2 : forall A B C D:Point, forall lAB lCD lAC lBD :Line, dist_4p A B C D ->
incid_lp A lAB && incid_lp B lAB -> incid_lp C lCD && incid_lp D lCD ->
incid_lp A lAC && incid_lp C lAC -> incid_lp B lBD && incid_lp D lBD ->
(exists I:Point, incid_lp I lAB && incid_lp I lCD) ->
exists J:Point, incid_lp J lAC && incid_lp J lBD.
Axiom a3_1 : forall l:Line,
{A:Point & {B:Point & {C:Point |
(dist_3p A B C) && (incid_lp A l && incid_lp B l && incid_lp C l)}}}.
Axiom a3_2 : exists 11:Line, exists 12:Line,
forall p:Point, (incid_lp p 11 && incid_lp p l2).
Axiom a3_3 : forall l1 12 13:Line, dist_31 11 12 13 ->
exists 14 :Line, exists J1:Point, exists J2:Point, exists J3:Point,
Intersect_In l1 14 J1 && Intersect_In l2 l4 J2 && Intersect_In l3 14 J3.
```


Axioms for Projective Space Geometry : from a logic point of view

```
Axiom al_exists : forall A B : Point, { l : Line| incid_lp A l && incid_lp B l}.
Axiom uniqueness : forall (A B :Point)(11 12:Line),
incid_lp A l1 -> incid_lp B l1 -> incid_lp A l2 -> incid_lp B l2 -> A = B \/ l1 = l2.
Axiom a2 : forall A B C D:Point, forall lAB lCD lAC lBD :Line, dist_4p A B C D ->
incid_lp A lAB && incid_lp B lAB -> incid_lp C lCD && incid_lp D lCD ->
incid_lp A lAC && incid_lp C lAC -> incid_lp B lBD && incid_lp D lBD ->
(exists I:Point, incid_lp I lAB && incid_lp I lCD) ->
exists J:Point, incid_lp J lAC && incid_lp J lBD.
Axiom a3_1 : forall l:Line,
{A:Point & {B:Point & {C:Point |
(dist_3p A B C) && (incid_lp A l && incid_lp B l && incid_lp C l)}}}.
Axiom a3_2 : exists l1:Line, exists l2:Line,
forall p:Point, (incid_lp p l1 && incid_lp p l2).
Axiom a3_3 : forall 11 12 13:Line, dist_31 11 12 13 ->
exists 14 :Line, exists J1:Point, exists J2:Point, exists J3:Point,
Intersect_In l1 14 J1 && Intersect_In 12 14 J2 && Intersect_In l3 14 J3.
```


Outline

(1) Motivations and Context

(2) Examples pg(3,2) and pg(3,3)
(3) Coq specifications
4) Proof Optimizations
(5) Results and Future Work

Examples : pg(3,q)

	\# points	\# lines	\# points per line
$p g(3,2)$	15	35	3
$p g(3,3)$	40	130	4
$p g(3,4)$	85	357	5
$p g(3, q)$	$\left(q^{2}+1\right)(q+1)$	$\left(q^{2}+q+1\right)\left(q^{2}+1\right)$	$q+1$

- By duality: \# planes = \# points.
- Describing the incidence relation of $\mathrm{pg}(3, \mathrm{q})$: for each line, we provide the $q+1$ points which belong to it.
- e.g. $\mathrm{pg}(3,3)^{1}$

1. Alan R. Prince. Projective planes of order 12 and $P G(3,3)$. Discretellla3E Cirs thematics, 208-209 :477-483, 1999.

$\mathrm{pg}(3,3)$ - description of the incidence relation

L1	0	1	4	13	L14	1	2	5	14	L27	1	7	12	33	L40	1	8	24	26	L53	1	10	37	38
L2	0	2	24	17	L15	2	3	6	15	L28	2	19	26	4	L41	2	22	12	32	L54	2	33	29	13
L3	0	3	12	39	L16	3	5	27	20	L29	3	38	32	24	L42	3	10	26	28	L55	3	4	7	16
L4	0	5	26	34	L17	5	6	9	18	L30	5	30	28	12	L43	5	33	32	36	L56	5	24	19	13
L5	0	6	32	11	L18	6	27	35	1	L31	6	16	36	26	L44	6	4	28	21	L57	6	12	38	17
L6	0	27	28	31	L19	27	9	25	2	L32	27	13	21	32	L45	27	24	36	23	L58	27	26	30	39
L7	0	9	36	37	L20	9	35	14	3	L33	9	17	23	28	L46	9	12	21	8	L59	9	32	16	34
L8	0	35	21	29	L21	35	25	15	5	L34	35	39	8	36	$L 47$	35	26	23	22	L60	35	28	13	11
L9	0	25	23	7	L22	25	14	20	6	L35	25	34	22	21	L48	25	32	8	10	L61	25	36	17	31
L10	0	14	8	19	L23	14	15	20	6	L36	14	11	10	23	L49	14	28	22	33	L62	14	21	39	37
L11	0	15	22	38	L24	15	20	1	9	L37	15	31	33	8	L50	15	36	10	4	L63	15	23	34	29
L12	0	20	10	30	L25	20	18	2	35	L38	20	37	4	22	L51	20	21	33	24	L64	20	8	1	7
L13	0	18	33	16	L26	18	1	3	25	L39	18	29	24	10	L52	18	23	4	12	L65	18	22	31	19
L66	1	11	21	31	L79	1	16	23	39	L92	1	17	19	34	L105	1	22	30	36	L118	1	28	29	32
L67	2	31	23	37	L80	2	13	8	34	L93	2	39	38	11	L106	2	10	16	21	L119	2	36	7	28
L68	3	37	8	29	L81	3	17	22	11	L94	3	34	30	31	L107	3	33	13	23	L120	3	21	19	36
L69	5	29	22	7	L82	5	39	10	31	L95	5	11	16	37	L108	5	4	17	8	L121	5	23	38	21
L70	6	7	10	19	L83	6	34	33	37	$L 96$	6	31	13	29	L109	6	24	39	22	L122	6	8	30	23
L71	27	19	33	38	L84	27	11	4	29	L97	27	37	17	7	L110	27	12	34	10	L123	27	22	16	8
L72	9	38	4	30	L85	9	31	24	7	L98	9	29	39	19	L111	9	26	11	33	L124	9	10	13	22
L73	35	30	24	16	L86	35	37	12	19	L99	35	7	34	38	L112	35	32	31	4	L125	35	33	17	10
L74	25	16	12	13	L87	25	29	26	38	L100	25	19	11	30	L113	25	28	37	24	L126	25	4	39	33
L75	14	13	26	17	L88	14	7	32	30	L101	14	38	31	16	L114	14	36	29	12	L127	14	24	34	4
L76	15	17	32	39	L89	15	19	28	16	L102	15	30	37	13	L115	15	21	7	26	L128	15	12	11	24
L77	20	39	28	34	L90	20	38	36	13	L103	20	16	29	17	L116	20	23	19	32	L129	20	26	31	12
L78	18	34	36	11	L91	18	30	21	17	L104	18	13	7	39	L117	18	8	38	28	L130	18	32	37	26

$\mathrm{pg}(3,3)$ - comments on the description

- The formal proof for the axioms fails. Why?
- Checking the formal statement is correct.
- Checking the proof method works properly (yes, it works for pg(3,2)).
- Checking the description is correct. The incidence relation is incorrect.
- Fixing the incidence relation : using the number of points per line property, to locate the errors.

$\mathrm{pg}(3,3)$ - description of the incidence relation

L1	0	1	4	13	L14	1	2	5	14	L27	1	7	12	33	L40	1	8	24	26	L53	1	10		
L2	0	2	24	17	L15	2	3	6	15	L28	2	19	26	4	L41	2	22	12	32	L54	2	33		
L3	0	3	12	39	L16	3	5	27	20	L29	3	38	32	24	L42	3	10	26	28	L55	3			6
L4	0	5	26	34	L17	5	6	9	18	L30	5	30	28	12	L43	5	33	32	36	L56	5	24		
L5	0	6	32	11	L18	6	27	35	1	L3	6	16	36	26	L44	6	4	28	21	L57	6	12	38	7
L6	0	27	28	31	19	27	9	25	2	L32	27	13	21	32	L4	27	24	36	23	L58	27	26	30	39
L7	0	9	36	37	L20	9	35	14	3	L33	9	17	23	28	L46	9	12	21	8	L59	9	32	16	34
L8	0	35	21	29	L21	35	25	15		2 L 7	35	39	8	36	L47	35	26	23	22	L60	35	28	13	11
$L 9$	0	25	23	7	L22	25	14			L35	25	34	22	21	L48	25	32	8	10	L61	25	36	17	31
L10	0	14	8	19	L23	14	15	20		L36	14	11	10	23	L49	14	28	22	33	L62	14	21	39	37
L11	0	15	22	38	L24	15	20	I	9	L37	15	31	33	8	L50	15	36	10	4	L63	15	23	34	29
L12	0	20	10	30	L25	20	18	2	35	L38	20	37	4	22	L5	20	21	33	24	L6	20	8	11	
L13	0	18	33	16	L26	18	1	3	25	L39	18	29	24	10	L52	18	23	4	12	L65	18	22	31	19
L66	1	11	21	31		1	16	23	39	L92		17	19	34	5	1	22	30	36	18	1	28	29	32
L67	2	31	23	37	80	2	13	8	34	L93	2	39	38	11	L106	2	10	16	21	L119	2	36	7	28
L68	3	37	8	29	L81	3	17	22	11	L94	3	34	30	31	L107	3	33	13	23	$L 120$	3	21	19	36
L69	5	29	22	7	L82	5	39	10	31	L95	5	11	16	37	L108	5	4	17	8	L121	5	23	38	21
L70	6	7	10	19	L83	6	34	33	37	L96	6	31	13	29	L109	6	24	39	22	L122	6	8	30	23
L71	27	19	33	38	L84	27	11	4	29	L97	27	37	17	7	L110	27	12	34	10	L123	27	22	16	8
L72	9	38	4	30	L85	9	31	24	7	L98	9	29	39	19	L111	9	26	11	33	L124	9	10	13	22
L73	35	30	24	16	L86	35	37	12	19	L99	35	7	34	38	L112	35	32	31	4	L125	35	33	17	10
L74	25	16	12	13	L87	25	29	26	38	L100	25	19	11	30	L113	25	28	37	24	L126	25	4	39	33
L75	14	13	26	17	L88	14	7	32	30	L101	14	38	31	16	L114	14	36	29	12	L127	14	24	34	4
L76	15	17	32	39	L89	15	19	28	16	L102	15	30	37	13	$L 115$	15	21	7	26	L128	15	12	11	24
$L 77$	20	39	28	34	L90	20	38	36	13	L103	20	16	29	17	$L 116$	20	23	19	32	L129	20	26	31	12
L78	18	34	36	11	L91	18	30	21	17	L104	18	13	7	39	L117	18	8	38	28	L130	18	32	37	26

Outline

(1) Motivations and Context
(2) Examples $\mathrm{pg}(3,2)$ and $\mathrm{pg}(3,3)$
(3) Coq specifications
(4) Proof Optimizations
(5) Results and Future Work

Coq specifications

- Point and Line as simple inductive types.
- Case analysis is easy.
- Finding a witness can be challenging.
= trying each possible value and running the tactics.
- Writing the specification is a bit boring.

```
Inductive Point := P0 | P1 | P2 | ... | P40.
```

- Solutions
- Using finite types (ssreflect/mathcomp)
- Using plain inductive data-types and an external program to generate the specification

Our choice : an external program

- We choose to have an external program generating the specification (actually outputs a gallina specification)
- Indeed, we need a specification generation process anyway (for witnesses).
- Our implementation
- plain data-types combined with boolean reflection
- generating data-types such as Line (130 constructors)
- incidence relation as a boolean predicate
- equality (decidable)
- order relation (decidable and total)
- The witness for existential quantification are computed beforehand.

Outline

(1) Motivations and Context
(2) Examples $\mathrm{pg}(3,2)$ and $\mathrm{pg}(3,3)$
(3) Coq specifications
(4) Proof Optimizations
(5) Results and Future Work
iClu3E Cint

Proof Optimizations

- Witness finding reduced to function computation

Definition f_a3_3 (11:Line) (12:Line) (13:Line) :=...
computes a line which intersects the 3 lines I1, I2 and I3.

- Factorizing proofs as lemmas.

$$
\forall T Z x, \text { incid_lp } T x \rightarrow \text { incid_lp } Z x \rightarrow T<>Z \rightarrow x=(\text { l_from_points } T Z)
$$

- Proof-engineering : sequences of tactics, abstract, par

```
par :abstract (time (case v2; intros hp1p2; first [exact (degen_bool _ hp1p2) | (case
v3; intros hp1p3 hdist x; solve [ (exact (degen_bool _ hp1p3)) | (exact (degen_bool
_ hdist)) | exists_lppp (fst x) (fst (fst (snd x))) (snd (fst (snd x))) (snd (snd
x)) ])])).
```

no try, each goal is solved the first time it is encountered.

Symmetries

- Using appropriate symmetries to reduce the number of cases to check.

```
Axiom a2 : forall A B C D:Point, forall lAB lCD lAC lBD :Line, dist_4p A B C D ->
incid_lp A lAB && incid_lp B lAB -> incid_lp C lCD && incid_lp D lCD ->
incid_lp A lAC && incid_lp C lAC -> incid_lp B lBD && incid_lp D lBD ->
(exists I:Point, incid_lp I lAB && incid_lp I lCD) ->
exists J:Point, incid_lp J lAC && incid_lp J lBD.
```

for $\mathrm{pg}(3,3)$: at least $40^{*} 40^{*} 40^{*} 40=2560000$ cases to go

- Adding an order relation on points and lines.

```
Axiom a2 : forall A B C D:Point, forall lAB lCD lAC lBD :Line,
leP A B -> leP C D ->
dist_4p A B C D ->
incid_lp A lAB && incid_lp B lAB -> incid_lp C lCD && incid_lp D lCD ->
incid_lp A lAC && incid_lp C lAC -> incid_lp B lBD && incid_lp D lBD ->
(exists I:Point, incid_lp I lAB && incid_lp I lCD) ->
exists J:Point, incid_lp J lAC && incid_lp J lBD.
```


Without loss of generality

- Implementing a without loss of generality principle
- Re-ordering points in a specific order
- Re-using the previous statement (in a tactic)
- it requires adapting the statement as follows :

```
... (exists I:Point, incid_lp I lAB && incid_lp I lCD) ->
(exists J:Point, (incid_lp J lAC && incid_lp J lBD)) /\
(exists K:Point, (incid_lp K lAD && incid_lp K lBC)).
```


Outline

(1) Motivations and Context
(2) Examples pg(3,2) and pg $(3,3)$
(3) Coq specifications
4) Proof Optimizations
(5) Results and Future Work

Results and Future Work

- Results
- Using Intel(R) Core(TM) i5-4460 CPU @ 3.20GHz, 32 GB
- 24 min to verify the axioms of projective geom. for $\mathrm{pg}(3,2)$
- 2 h to verify the axioms of projective geom. for $\mathrm{pg}(3,3)$
- some experiments with Z3 and lean
- Related and future work
- Ranks (of sets of points) are an interesting alternative approach (PhD work of David Braun)
- Next step : spreads and packings in pg(3,2)
- Example of state-of-the-art results : Svetlana Topalova and Stela Zhelezova. On transitive parallelisms of $P G(3,4)$. 2017

Questions?

- Thank you for your attention!

© David Richter - Western Michigan University

