
Kindly Bent To Free Us

Gabriel Radanne Peter Thiemann

December 6, 2018

val Tls_lwt.of_t : Tls_lwt.Unix.t -> in * out
(* Turn a file descr into input/output channels *)

let fd : Tls_lwt.Unit.t =
let input, output = Tls_lwt.of_t fd
... (* read some things *)
let%lwt () = Lwt_io.close input in
...
let%lwt c = Lwt_io.write output "thing" in (*Oups*)
...

The default behavior is to close the underlying file description when
a channel is closed.

2

val Tls_lwt.of_t : Tls_lwt.Unix.t -> in * out
(* Turn a file descr into input/output channels *)

let fd : Tls_lwt.Unit.t =
let input, output = Tls_lwt.of_t fd
... (* read some things *)
let%lwt () = Lwt_io.close input in
...
let%lwt c = Lwt_io.write output "thing" in (*Oups*)
...

The default behavior is to close the underlying file description when
a channel is closed.

2

val Tls_lwt.of_t : Tls_lwt.Unix.t -> in * out
(* Turn a file descr into input/output channels *)

let fd : Tls_lwt.Unit.t =
let input, output = Tls_lwt.of_t fd
... (* read some things *)
let%lwt () = Lwt_io.close input in
...
let%lwt c = Lwt_io.write output "thing" in (*Oups*)
...

The default behavior is to close the underlying file description when
a channel is closed.

2

val Tls_lwt.of_t : Tls_lwt.Unix.t -> in * out
(* Turn a file descr into input/output channels *)

let fd : Tls_lwt.Unit.t =
let input, output = Tls_lwt.of_t fd
... (* read some things *)
let%lwt () = Lwt_io.close input in
...
let%lwt c = Lwt_io.write output "thing" in (*Oups*)
...

The default behavior is to close the underlying file description when
a channel is closed.

2

Many partial solutions

• Closures

• Monads

• Existential types

• . . .

What we really need is to enforce linearity.

3

Many partial solutions

• Closures

• Monads

• Existential types

• . . .

What we really need is to enforce linearity.

3

Many places in OCaml where enforcing linearity is useful:

• IO (File handle, channels, network connections, . . .)

• Protocols (With session types! Mirage libraries)

• One-shot continuations (effects!)

• Transient data-structures

• C-style “struct parsing”

• . . .

4

Goals:

• Complete and principal type inference

• Impure strict context

• Works well with type abstraction

• Play balls with various other ongoing works (Effects, Resource
polymorphism, . . .)

Non Goals:

• Support every linear code pattern under the sun

• Design associated compiler optimisations/GC integration (yet)

5

Goals:

• Complete and principal type inference

• Impure strict context

• Works well with type abstraction

• Play balls with various other ongoing works (Effects, Resource
polymorphism, . . .)

Non Goals:

• Support every linear code pattern under the sun

• Design associated compiler optimisations/GC integration (yet)

5

The Affe language

Types and Behaviors

In Affe, the behavior of a variable is determined by its type:

type channel : A (* channel is Affine! *)

let with_file s f =
let c = open_channel s
let c = f c in
close_channel c

val with_file : string -> (channel -> channel)

let () =
let r = ref None in
with_file "thing"
(fun c -> r := Some c ; c) (* 8 No! *)

6

Types and Behaviors

In Affe, the behavior of a variable is determined by its type:

type channel : A (* channel is Affine! *)

let with_file s f =
let c = open_channel s
let c = f c in
close_channel c

val with_file : string -> (channel -> channel)

let () =
let r = ref None in
with_file "thing"
(fun c -> r := Some c ; c) (* 8 No! *)

6

Types and Behaviors

In Affe, the behavior of a variable is determined by its type:

type channel : A (* channel is Affine! *)

let with_file s f =
let c = open_channel s
let c = f c in
close_channel c

val with_file : string -> (channel -> channel)

let () =
let r = ref None in
with_file "thing"
(fun c -> r := Some c ; c) (* 8 No! *)

6

Inference at work

Infer unrestricted in case of duplication:

let f = fun c -> r := Some c ; c
val f : (’a : U) . ’a -> ’a

7

The kinds so far

So far, two kinds:

A Affine types: can be used at most once

U Unrestricted types

Additionally, we have:

U ≤ A

8

Inference at work

What about closures?

let f = fun a -> fun b -> (a, b)
val f : ’a -> ’b -> ’a * ’b (* ? *)

9

Inference at work

What about closures?

let f = fun a -> fun b -> (a, b)
val f : (’a : ’k) => ’a -> ’b -{’k}> ’a * ’b

9

Inference at work

let app f x = f x
val app :
’k1 < ’k2 =>
(’a -{’k1}> ’b) -> ’a -{’k2}> ’b

10

Closer look at type declarations

You can annotate the kinds on type declarations.

Vanilla OCaml references are fully unrestricted:

type (’a : U) ref : U = ...

We can also have constraints on kinds. The pair type operator:

type * : (k1 < k) & (k2 < k) => k1 -> k2 -> k

11

Closer look at type declarations

You can annotate the kinds on type declarations.

Vanilla OCaml references are fully unrestricted:

type ref : U -> U = ...

We can also have constraints on kinds. The pair type operator:

type * : (k1 < k) & (k2 < k) => k1 -> k2 -> k

11

Closer look at type declarations

You can annotate the kinds on type declarations.

Vanilla OCaml references are fully unrestricted:

type ref : U -> U = ...

We can also have constraints on kinds. The pair type operator:

type * : (k1 < k) & (k2 < k) => k1 -> k2 -> k

11

More interesting example

Mixing with abstraction:

module AffineArray : sig
type -’a w : A
val create :
(’a : U) . int -> ’a -> ’a w

val set : ’a w -> int -{A}> ’a -{A}> ’a w

type +’a r : U
val freeze : ’a w -> ’a r
val get : int -> ’a r -> ’a

end

12

The calculus

The calculus

Expressions

e ::= c | x | (e e ′) | λx .e
| let x = e in e ′

| (K e) | elimK e

Type Expressions

τ ::= α | τ k−→ τ | (τ∗) t

k ::= κ | ` ∈ L

13

The calculus Constraints

Constraints are only acceptable in schemes:

σ ::= ∀κ∗∀(α : k)∗.(C⇒ τ)

θ ::= ∀κ∗.(C⇒ k∗i → k)

The constraint language in schemes is limited to list of inequalities:

C ::= (k ≤ k ′)∗

14

Typing

Σ |(C , ψ) | Γ`w e : τ

ExpressionEnvironment

Type

UnifierConstraints

Usage Map

15

Typing Tracking linearity

Variables can be kind-polymorphic and all their instances might not
have the same kinds.

=⇒ We must track the kinds of all use-sites for each variable.

Use maps (Σ) associates variables to multisets of kinds and are
equipped with three operations:

Σ ∩ Σ′ Σ ∪ Σ′ Σ ≤ k

16

Typing Tracking linearity

Variables can be kind-polymorphic and all their instances might not
have the same kinds.

=⇒ We must track the kinds of all use-sites for each variable.

Use maps (Σ) associates variables to multisets of kinds and are
equipped with three operations:

Σ ∩ Σ′ Σ ∪ Σ′ Σ ≤ k

16

Typing Tracking linearity

When typechecking (e1, e2):

• Σ1 |(C1, ψ1) | Γ`w e1 : τ1

• Σ2 |(C2, ψ2) | Γ`w e2 : τ2

• Add (Σ1 ∩ Σ2 ≤ U) to the constraints

• . . .

• Return Σ1 ∪ Σ2

17

Typing Tracking linearity

When typechecking (e1, e2):

• Σ1 |(C1, ψ1) | Γ`w e1 : τ1

• Σ2 |(C2, ψ2) | Γ`w e2 : τ2

• Add (Σ1 ∩ Σ2 ≤ U) to the constraints

• . . .

• Return Σ1 ∪ Σ2

17

Typing Tracking linearity

When typechecking (e1, e2):

• Σ1 |(C1, ψ1) | Γ`w e1 : τ1

• Σ2 |(C2, ψ2) | Γ`w e2 : τ2

• Add (Σ1 ∩ Σ2 ≤ U) to the constraints

• . . .

• Return Σ1 ∪ Σ2

17

Typing Tracking linearity

When typechecking (e1, e2):

• Σ1 |(C1, ψ1) | Γ`w e1 : τ1

• Σ2 |(C2, ψ2) | Γ`w e2 : τ2

• Add (Σ1 ∩ Σ2 ≤ U) to the constraints

• . . .

• Return Σ1 ∪ Σ2

17

Typing Tracking linearity

When typechecking (e1, e2):

• Σ1 |(C1, ψ1) | Γ`w e1 : τ1

• Σ2 |(C2, ψ2) | Γ`w e2 : τ2

• Add (Σ1 ∩ Σ2 ≤ U) to the constraints

• . . .

• Return Σ1 ∪ Σ2

17

Constraints

A slightly more general context: CL is the constraint system:

C ::= (τ1 ≤ τ2) | (k1 ≤ k2) | C1 ∧ C2 | ∃α.C

where k ::= κ | ` ∈ L and (L,≤L) is a complete lattice.

Respect, among other things:

` ≤L `′

`e(` ≤ `′)
`e(k ≤ `>) `e(`⊥ ≤ k)

18

Constraints

A slightly more general context: CL is the constraint system:

C ::= (τ1 ≤ τ2) | (k1 ≤ k2) | C1 ∧ C2 | ∃α.C

where k ::= κ | ` ∈ L and (L,≤L) is a complete lattice.

Respect, among other things:

` ≤L `′

`e(` ≤ `′)
`e(k ≤ `>) `e(`⊥ ≤ k)

18

Constraints Normalization

Example : λf .λx .((f x), x)

Raw constraints:

(αf : κf)(αx : κx) . . .

(αf ≤ γ
κ1−→β) ∧ (γ ≤ αx) ∧ (β ∗ αx ≤ αr) ∧ (κx ≤ U)

We unify the types and discover new constraints:

αr = (γ
κ3−→β)

κ2−→ γ
κ1−→β ∗ γ

(κx ≤ U) ∧ (κγ ≤ κx) ∧ (κx ≤ κr) ∧ (κβ ≤ κr) ∧ (κ3 ≤ κf) ∧ (κf ≤ κ1)

19

Constraints Normalization

Example : λf .λx .((f x), x)

Raw constraints:

(αf : κf)(αx : κx) . . .

(αf ≤ γ
κ1−→β) ∧ (γ ≤ αx) ∧ (β ∗ αx ≤ αr) ∧ (κx ≤ U)

We unify the types and discover new constraints:

αr = (γ
κ3−→β)

κ2−→ γ
κ1−→β ∗ γ

(κx ≤ U) ∧ (κγ ≤ κx) ∧ (κx ≤ κr) ∧ (κβ ≤ κr) ∧ (κ3 ≤ κf) ∧ (κf ≤ κ1)

19

(γ : κγ)(β : κβ). (γ
κ3−→β)

κ2−→ γ
κ1−→β ∗ γ

κγ = κx = U ∧ κ3 ≤ κ1

U

κx

κr

κγ κβ κ3

κf

κ1

A

κ

κ1κ2

`1`2

`1 ∧ `2

(γ : κγ)(β : κβ). (γ
κ3−→β)

κ2−→ γ
κ1−→β ∗ γ

κγ = κx = U ∧ κ3 ≤ κ1

U

κx

κr

κγ κβ κ3

κf

κ1

A

κ

κ1κ2

`1`2

`1 ∧ `2

(γ : κγ)(β : κβ). (γ
κ3−→β)

κ2−→ γ
κ1−→β ∗ γ

κγ = κx = U ∧ κ3 ≤ κ1

U

κx

κr

κγ κβ κ3

κf

κ1

A

κ

κ1κ2

`1`2

`1 ∧ `2

(γ : κγ)(β : κβ). (γ
κ3−→β)

κ2−→ γ
κ1−→β ∗ γ

κγ = κx = U ∧ κ3 ≤ κ1

U

κx

κr

κγ κβ κ3

κf

κ1

A

κ

κ1κ2

`1`2

`1 ∧ `2

(γ : κγ)(β : κβ). (γ
κ3−→β)

κ2−→ γ
κ1−→β ∗ γ

κγ = κx = U ∧ κ3 ≤ κ1

U

κx

κr

κγ κβ κ3

κf

κ1

A

κ

κ1κ2

`1`2

`1 ∧ `2

(γ : κγ)(β : κβ). (γ
κ3−→β)

κ2−→ γ
κ1−→β ∗ γ

κγ = κx = U ∧ κ3 ≤ κ1

U

κx

κr

κγ κβ κ3

κf

κ1

A

κ

κ1κ2

`1`2

`1 ∧ `2

(γ : κγ)(β : κβ). (γ
κ3−→β)

κ2−→ γ
κ1−→β ∗ γ

κγ = κx = U

∧ κ3 ≤ κ1

U

κx

κr

κγ κβ κ3

κf

κ1

A

κ

κ1κ2

`1`2

`1 ∧ `2

(γ : κγ)(β : κβ). (γ
κ3−→β)

κ2−→ γ
κ1−→β ∗ γ

κγ = κx = U

∧ κ3 ≤ κ1

U

κr

κβ κ3

κf

κ1

A

κ

κ1κ2

`1`2

`1 ∧ `2

(γ : κγ)(β : κβ). (γ
κ3−→β)

κ2−→ γ
κ1−→β ∗ γ

κγ = κx = U

∧ κ3 ≤ κ1

U

κr

κβ κ3

κf

κ1

A

κ

κ1κ2

`1`2

`1 ∧ `2

(γ : κγ)(β : κβ). (γ
κ3−→β)

κ2−→ γ
κ1−→β ∗ γ

κγ = κx = U

∧ κ3 ≤ κ1

U

κr

κβ κ3

κf

κ1

A

κ

κ1κ2

`1`2

`1 ∧ `2

(γ : κγ)(β : κβ). (γ
κ3−→β)

κ2−→ γ
κ1−→β ∗ γ

κγ = κx = U

∧ κ3 ≤ κ1

U

κβ κ3

κ1

A

κ

κ1κ2

`1`2

`1 ∧ `2

(γ : κγ)(β : κβ). (γ
κ3−→β)

κ2−→ γ
κ1−→β ∗ γ

κγ = κx = U

∧ κ3 ≤ κ1

κβ κ3

κ1

A

κ

κ1κ2

`1`2

`1 ∧ `2

(γ : κγ)(β : κβ). (γ
κ3−→β)

κ2−→ γ
κ1−→β ∗ γ

κγ = κx = U ∧ κ3 ≤ κ1

κβ κ3

κ1

A

κ

κ1κ2

`1`2

`1 ∧ `2

Constraints Normalization

Normalization is complete and principal.

λf .λx .((f x), x) :

∀κβκ1κ2κ3(γ : U)(β : κβ). (κ3 ≤ κ1)⇒(γ
κ3−→β)

κ2−→ γ
κ1−→β ∗ γ

21

Constraints Simplification rules

Well known simplifications on constraints:

• Replace variable in positive position by their lower bound

• Replace variable in negative position by their upper bound

=⇒ Unfinished, need to investigate principality

22

Constraints Simplification rules

Well known simplifications on constraints:

• Replace variable in positive position by their lower bound

• Replace variable in negative position by their upper bound

∀κβκ1κ2κ3(γ : U)(β : κβ).(κ3 ≤ κ1)⇒(γ
κ3−→β)

κ2−→ γ
κ1−→β ∗ γ

=⇒ Unfinished, need to investigate principality

22

Constraints Simplification rules

Well known simplifications on constraints:

• Replace variable in positive position by their lower bound

• Replace variable in negative position by their upper bound

∀κβκ1κ3(γ : U)(β : κβ).(κ3 ≤ κ1)⇒(γ
κ3−→β)−→ γ

κ1−→β ∗ γ

=⇒ Unfinished, need to investigate principality

22

Constraints Simplification rules

Well known simplifications on constraints:

• Replace variable in positive position by their lower bound

• Replace variable in negative position by their upper bound

∀κβκ(γ : U)(β : κβ).(γ
κ−→β)−→ γ

κ−→β ∗ γ

=⇒ Unfinished, need to investigate principality

22

Constraints Simplification rules

Well known simplifications on constraints:

• Replace variable in positive position by their lower bound

• Replace variable in negative position by their upper bound

∀κβκ(γ : U)(β : κβ).(γ
κ−→β)−→ γ

κ−→β ∗ γ

=⇒ Unfinished, need to investigate principality

22

Constraints

The only requirement is that `⊥ = U.

• A doesn’t appear in the typing rules.
It only comes from the buitins and/or the type declarations.

• The lattice doesn’t have to be finite.

• The constraint language can be expanded further.

23

Constraints

The only requirement is that `⊥ = U.

• A doesn’t appear in the typing rules.
It only comes from the buitins and/or the type declarations.

• The lattice doesn’t have to be finite.

• The constraint language can be expanded further.

23

Conclusion

I presented a somewhat minimalistic approach to add linear types
to an existing ML language (like OCaml).

• Based on kinds and constraints
• Works with type abstraction and modules
• Support type inference
• Doesn’t break the whole ecosystem

The system is still small. We must look at concrete code pattern
used in OCaml and decide how to support them.

Area of future work:

• Explore various interactions with modules
• Borrowing
• Better control-flow interactions

24

Close(Talk)

Really??

Do you really think adding kinds, subkinding and qualified
types to OCaml is a good idea?

Yes, I do!

• Qualified types are coming for modular implicits anyway.

• Having proper kinds would fix many weirdness (rows, . . .) and
enable nice extensions (units of measures).

• I could make Eliom even better with them! ,

25

Really??

Do you really think adding kinds, subkinding and qualified
types to OCaml is a good idea?

Yes, I do!

• Qualified types are coming for modular implicits anyway.

• Having proper kinds would fix many weirdness (rows, . . .) and
enable nice extensions (units of measures).

• I could make Eliom even better with them! ,

25

Really??

Do you really think adding kinds, subkinding and qualified
types to OCaml is a good idea?

Yes, I do!

• Qualified types are coming for modular implicits anyway.

• Having proper kinds would fix many weirdness (rows, . . .) and
enable nice extensions (units of measures).

• I could make Eliom even better with them! ,

25

Really??

Do you really think adding kinds, subkinding and qualified
types to OCaml is a good idea?

Yes, I do!

• Qualified types are coming for modular implicits anyway.

• Having proper kinds would fix many weirdness (rows, . . .) and
enable nice extensions (units of measures).

• I could make Eliom even better with them! ,

25

Going further

Current area of work

1. Richer type system

2. Modules

3. Borrowing

4. Prototype cool APIs with it

26

Constraints Extensions

Constraints in a similar style have been applied to:

• (Relaxed) value restriction

• GADTs

• Rows

• Type elaboration

• . . .

27

Modules

Several distinct problematic:

• Type abstraction

• Linear/affine values in modules

• Functors

• Separate compilation

28

Modules

Several distinct problematic:

• Type abstraction 4

Can declare unrestricted types and expose them as Affine.

• Linear/affine values in modules

• Functors

• Separate compilation

28

Modules

Several distinct problematic:

• Type abstraction

• Linear/affine values in modules
Behave like tuples: take the LUB of the kinds of the exposed
values.
What about values that are not exposed? They don’t matter!

• Functors

• Separate compilation

28

Modules

Several distinct problematic:

• Type abstraction

• Linear/affine values in modules

• Functors
What happens if a functor takes a module containing affine
values?
=⇒ We need kind annotation on the functor arrow. . ./

• Separate compilation

28

Modules

Several distinct problematic:

• Type abstraction

• Linear/affine values in modules

• Functors

• Separate compilation
What about linear/affine constants?
=⇒ Should probably be forbidden. . .

But what about stdout ?

28

Modules

Several distinct problematic:

• Type abstraction

• Linear/affine values in modules

• Functors

• Separate compilation
What about linear/affine constants?
=⇒ Should probably be forbidden. . .
But what about stdout ?

28

Borrowing

Borrowing seem essential to express many patterns found in OCaml.

Read-only borrows, in CCHashTrie:

val add_mut : id -> key -> ’a -> ’a t -> ’a t
(* add_mut ~id k v m behaves like add k v m, except

it will mutate in place whenever possible. *)

Mutable borrows, in lacaml:

val Lacaml.D.sycon :
... -> ?iwork:Common.int32_vec -> mat -> float

(* iwork is an optional preallocated work buffer *)

29

Borrowing

Borrowing seem essential to express many patterns found in OCaml.

Read-only borrows, in CCHashTrie:

val add_mut : id -> key -> ’a -> ’a t -> ’a t
(* add_mut ~id k v m behaves like add k v m, except

it will mutate in place whenever possible. *)

Mutable borrows, in lacaml:

val Lacaml.D.sycon :
... -> ?iwork:Common.int32_vec -> mat -> float

(* iwork is an optional preallocated work buffer *)

29

Borrowing

Borrowing seem essential to express many patterns found in OCaml.

Read-only borrows, in CCHashTrie:

val add_mut : id -> key -> ’a -> ’a t -> ’a t
(* add_mut ~id k v m behaves like add k v m, except

it will mutate in place whenever possible. *)

Mutable borrows, in lacaml:

val Lacaml.D.sycon :
... -> ?iwork:Common.int32_vec -> mat -> float

(* iwork is an optional preallocated work buffer *)

29

Borrowing

“Resource Polymorphism” has the following lattice:

Copy

Own

Copy@r

Seq@r

Own@r

It would requires:

• More syntactic annotations

• Regions

30

Which kind of linearity?

• Ownership approaches

• Capabilities and typestates

• Substructural type systems

• . . .

31

Which kind of linearity?

• Ownership approaches
Suitable to imperative languages (Rust, . . .).

• Capabilities and typestates

• Substructural type systems

• . . .

31

Which kind of linearity?

• Ownership approaches

• Capabilities and typestates
Often use in Object-Oriented contexts (Wyvern, Plaid,
Hopkins Objects Group, . . .).

• Substructural type systems

• . . .

31

Which kind of linearity?

• Ownership approaches

• Capabilities and typestates

• Substructural type systems
Many variations, mostly in functional languages:

• Inspired directly from linear logic (Linear Haskell, Walker, . . .)
• Uniqueness (Clean)
• Kinds (Alms, Clean, F◦)
• Constraints (Quill)

• . . .

31

Which kind of linearity?

• Ownership approaches

• Capabilities and typestates

• Substructural type systems

• . . .
Mix of everything: Mezzo

31

Which kind of linearity?

• Ownership approaches

• Capabilities and typestates

• Substructural type systems

• . . .

31

The HM(X) framework

HM(X) (Odersky et al., 1999) is a framework to build an HM type
system (with inference) based on a given constraint system.

We provide two additions:

• A small extension of HM(X) that tracks kinds and linearity

• An appropriate constraint system

32

References

Martin Odersky, Martin Sulzmann, and Martin Wehr. 1999. Type
Inference with Constrained Types. TAPOS 5, 1 (1999), 35–55.

32

	The Affe language
	The calculus
	Going further
	References

