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Frama-C
A verification framework for C programs

A specification language: ACSL
A kernel to parse C and ACSL
A large collection of collaborative
plugins

ACSL is a contract-oriented specification language.
Example: The contract of a function testing if an array T of with size

elements contains x
1 /*@
2 requires \valid_read(T + (0..(size - 1)));
3 ensures \result == 0 <==> \forall integer j;
4 0 <= j < size ==> T[j] != x;
5 assigns \nothing \from size, x, *(T + 0 .. (size - 1));
6 */
7 int is_member(int* T, unsigned size, int x) { ... }
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Deductive Verification with WP

1 /*@ requires \valid_read(T + (0..(size - 1)));
2 ensures \result == 0 <==> \forall integer j;
3 0 <= j < size ==> T[j] != x;
4 assigns \nothing;
5 */
6 int is_member(int* T, unsigned size, int x) {
7 int res = 0;
8 /*@ loop invariant ... */
9 for(unsigned i = 0 ; i < size ; ++i) {

10 /*@ assert rte: mem_access: \valid_read(T + i); */
11 if(T[i] == x)
12 res = 1;
13 }
14 return res;
15 }

WP and deductive verification
Brings formal guarantees when tests
only increase trust
Sound but incomplete
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The Limits of ACSL: a Case Study

Confidentiality-oriented page management:

Each page has a
confidentiality level CL
(PUBLIC or PRIVATE),
Each process has a
similar level,
A process can read from
(or write to) a page
depending on their levels
A process may
encrypt/decrypt a page,
thus changing its level

Function contracts are insufficient: need for more global properties
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Solution: Meta-Properties

We introduce meta-properties, which are a combination of:
A classic property P, expressed in ACSL.
A context: The specific situation in which P must hold inside a
function.
Target functions: The set of functions for which P should hold in
the given context.

meta \strong_invariant({foo,bar}), A < B;
”A < B” must hold everywhere in functions foo and bar

meta \writing(ALL), \written != &X;
No function can modify the global variable X

meta \writing(ALL), \written == &X ==> X == 0;
A function can only modify X if it was previously null
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Available Contexts for Meta-Properties

Strong invariant: Everywhere in the function
Weak invariant: Before and after the function
Upon writing: Whenever the memory is modified. The property P
can use a special meta-variable \written, referencing the address
being written to at a particular point.

meta \writing(ALL), \written != &X;
No function can modify the global variable X

Upon reading: Similarly, when memory is read
Upon calling: Similarly, when a function is called
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Use of Labels in Meta-Properties

In Frama-C, predicates can refer to the value of locations at different
points (labels): Pre, Post, Here, C labels, etc.

assert \at(x, Here) == \at(x, Pre);
x has the same value as when the function was called

Still true for meta-properties with two more labels: Before (resp. After),
referring to state before (resp. after) any statement relevant to the
context.

meta \writing(main), \written != &X ||
\at(X, Before) == 0 || \at(X, After) != 0;

There is no statement changing X to 0 in main

Virgile Robles (CEA List, LSL) Spec. and Verif. of High-Level Properties December 6th, 2018 7 / 14



Automatic Verification of Meta-properties (1/4)
Translation of meta-properties into native ACSL: leverage existing tools.
Strong invariant P: assert P when truth may change

Before and after transformation for
meta \strong_invariant(main), A == B;

A must remain equal to B at every point of main

1 void main() {
2 C = 42;
3 A = C;
4 B = C;
5 }

1 /*@ requires A == B;
2 ensures A == B;
3 */
4 void main() {
5 C = 42;
6 A = C;
7 //@ assert A == B; //Failure
8 B = C;
9 //@ assert A == B;

10 }lenient delimiter:
Combines strong and weak invarant
Allows to break the invariant locally
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Automatic Verification of Meta-properties (2/4)

Upon writing: detect modification sites by syntactic analysis

Before and after transformation for
meta \writing(main), \written != &C;

main cannot modify C

1 void main() {
2 C = 42;
3 A = C;
4 B = C;
5 }

1 void main() {
2 //@ assert &C != &C; //Failure
3 C = 42;
4 //@ assert &A != &C;
5 A = C;
6 //@ assert &B != &C;
7 B = C;
8 }

Performance: discard any obvious assertion to avoid overloading the proof
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Automatic Verification of Meta-properties (3/4)

After/Before labels: refer to local C labels

Before and after transformation for
meta \writing(main), \written != &X ||

\at(X, Before) == 0 || \at(X, After) != 0;
There is no statement changing X to 0 in main

1 void main() {
2 X = X;
3 X = 4;
4 X = 0;
5 }

1 void main() {
2 _meta_1: X = X;
3 /*@ assert \at(X, _meta_1) == 0
4 || \at(X, Here) != 0; */
5 _meta_2: X = 4;
6 /*@ assert \at(X, _meta_2) == 0
7 || \at(X, Here) != 0; */
8 _meta_3: X = 0;
9 /*@ assert \at(X, _meta_3) == 0

10 || \at(X, Here) != 0; */
11 //Failure
12 }
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Automatic Verification of Meta-properties (4/4)
Specification-only functions: use assigns clause for writing context

1 /*@
2 behavior BA:
3 assumes PA(params);
4 assigns XA1, XA2;
5 behavior BB:
6 assumes PB(params);
7 assigns XB;
8 */
9 extern void g(params);

10

11 void f() {
12 g(act_params);
13 }
14

15 /*@ meta \writing(f),
16 \written != &glob;
17 */

1 /*@
2 behavior BA:
3 assumes PA(params);
4 assigns XA1, XA2;
5 behavior BB:
6 assumes PB(params);
7 assigns XB;
8 */
9 extern void g(params);

10

11 void f() {
12 g(act_params);
13 /*@ assert PA(act_parms)
14 ⇒ &XA1 != &glob; */
15 /*@ assert PA(act_parms)
16 ⇒ &XA2 != &glob; */
17 /*@ assert PB(act_parms)
18 ⇒ &XB != &glob; */
19 }
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Back to the Confidentiality Case Study
The confidentiality case study was:

Implemented in C
Partially specified with ACSL contracts
Fully specified with meta-properties

Some of the meta-properties:
Public allocated pages cannot be modified by private agents
Confidentiality levels can only be modified by encryption/decryption
Unallocated pages cannot be read from
Only the allocation/deallocation functions can change the status of a
page

Verification results:
Transformation time: < 5s
290 proof obligations
Automatically proved in ≈ 1m with Alt-Ergo
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Conclusion
Contributions:

More expressive power: see case study
High-level view of properties established on a software module
Ease development: automatically check if a property is maintained
after an update (of the code or of a function contract)

MetAcsl

Future Work:
Tackle more realistic case studies
Enrich meta-properties where needed
Prove soundness of transformation
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Conclusion

Contributions:
More expressive power: see case study
High-level view of properties established on a software module
Ease development: automatically check if a property is maintained
after an update (of the code or of a function contract)

For more details, see:
MetAcsl: Specification and Verification of High-Level Properties,
(submitted for TACAS 2019, arXiv:1811.10509)
https://github.com/Firobe/metacsl_examples
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