
Specification and Verification of
High-Level Properties

Virgile Robles
Nikolai Kosmatov, Virgile Prevosto, Louis Rilling, Pascale Le Gall

CEA List, Software Safety and Security Laboratory

December 6th, 2018

Virgile Robles (CEA List, LSL) Spec. and Verif. of High-Level Properties December 6th, 2018 1 / 14

Frama-C
A verification framework for C programs

A specification language: ACSL
A kernel to parse C and ACSL
A large collection of collaborative
plugins

ACSL is a contract-oriented specification language.
Example: The contract of a function testing if an array T of with size

elements contains x
1 /*@
2 requires \valid_read(T + (0..(size - 1)));
3 ensures \result == 0 <==> \forall integer j;
4 0 <= j < size ==> T[j] != x;
5 assigns \nothing \from size, x, *(T + 0 .. (size - 1));
6 */
7 int is_member(int* T, unsigned size, int x) { ... }

Virgile Robles (CEA List, LSL) Spec. and Verif. of High-Level Properties December 6th, 2018 2 / 14

Deductive Verification with WP

1 /*@ requires \valid_read(T + (0..(size - 1)));
2 ensures \result == 0 <==> \forall integer j;
3 0 <= j < size ==> T[j] != x;
4 assigns \nothing;
5 */
6 int is_member(int* T, unsigned size, int x) {
7 int res = 0;
8 /*@ loop invariant ... */
9 for(unsigned i = 0 ; i < size ; ++i) {

10 /*@ assert rte: mem_access: \valid_read(T + i); */
11 if(T[i] == x)
12 res = 1;
13 }
14 return res;
15 }

WP and deductive verification
Brings formal guarantees when tests
only increase trust
Sound but incomplete

Virgile Robles (CEA List, LSL) Spec. and Verif. of High-Level Properties December 6th, 2018 3 / 14

The Limits of ACSL: a Case Study

Confidentiality-oriented page management:

Each page has a
confidentiality level CL
(PUBLIC or PRIVATE),
Each process has a
similar level,
A process can read from
(or write to) a page
depending on their levels
A process may
encrypt/decrypt a page,
thus changing its level

Function contracts are insufficient: need for more global properties

Virgile Robles (CEA List, LSL) Spec. and Verif. of High-Level Properties December 6th, 2018 4 / 14

Solution: Meta-Properties

We introduce meta-properties, which are a combination of:
A classic property P, expressed in ACSL.
A context: The specific situation in which P must hold inside a
function.
Target functions: The set of functions for which P should hold in
the given context.

meta \strong_invariant({foo,bar}), A < B;
”A < B” must hold everywhere in functions foo and bar

meta \writing(ALL), \written != &X;
No function can modify the global variable X

meta \writing(ALL), \written == &X ==> X == 0;
A function can only modify X if it was previously null

Virgile Robles (CEA List, LSL) Spec. and Verif. of High-Level Properties December 6th, 2018 5 / 14

Available Contexts for Meta-Properties

Strong invariant: Everywhere in the function
Weak invariant: Before and after the function
Upon writing: Whenever the memory is modified. The property P
can use a special meta-variable \written, referencing the address
being written to at a particular point.

meta \writing(ALL), \written != &X;
No function can modify the global variable X

Upon reading: Similarly, when memory is read
Upon calling: Similarly, when a function is called

Virgile Robles (CEA List, LSL) Spec. and Verif. of High-Level Properties December 6th, 2018 6 / 14

Use of Labels in Meta-Properties

In Frama-C, predicates can refer to the value of locations at different
points (labels): Pre, Post, Here, C labels, etc.

assert \at(x, Here) == \at(x, Pre);
x has the same value as when the function was called

Still true for meta-properties with two more labels: Before (resp. After),
referring to state before (resp. after) any statement relevant to the
context.

meta \writing(main), \written != &X ||
\at(X, Before) == 0 || \at(X, After) != 0;

There is no statement changing X to 0 in main

Virgile Robles (CEA List, LSL) Spec. and Verif. of High-Level Properties December 6th, 2018 7 / 14

Automatic Verification of Meta-properties (1/4)
Translation of meta-properties into native ACSL: leverage existing tools.
Strong invariant P: assert P when truth may change

Before and after transformation for
meta \strong_invariant(main), A == B;

A must remain equal to B at every point of main

1 void main() {
2 C = 42;
3 A = C;
4 B = C;
5 }

1 /*@ requires A == B;
2 ensures A == B;
3 */
4 void main() {
5 C = 42;
6 A = C;
7 //@ assert A == B; //Failure
8 B = C;
9 //@ assert A == B;

10 }lenient delimiter:
Combines strong and weak invarant
Allows to break the invariant locally

Virgile Robles (CEA List, LSL) Spec. and Verif. of High-Level Properties December 6th, 2018 8 / 14

Automatic Verification of Meta-properties (2/4)

Upon writing: detect modification sites by syntactic analysis

Before and after transformation for
meta \writing(main), \written != &C;

main cannot modify C

1 void main() {
2 C = 42;
3 A = C;
4 B = C;
5 }

1 void main() {
2 //@ assert &C != &C; //Failure
3 C = 42;
4 //@ assert &A != &C;
5 A = C;
6 //@ assert &B != &C;
7 B = C;
8 }

Performance: discard any obvious assertion to avoid overloading the proof

Virgile Robles (CEA List, LSL) Spec. and Verif. of High-Level Properties December 6th, 2018 9 / 14

Automatic Verification of Meta-properties (3/4)

After/Before labels: refer to local C labels

Before and after transformation for
meta \writing(main), \written != &X ||

\at(X, Before) == 0 || \at(X, After) != 0;
There is no statement changing X to 0 in main

1 void main() {
2 X = X;
3 X = 4;
4 X = 0;
5 }

1 void main() {
2 _meta_1: X = X;
3 /*@ assert \at(X, _meta_1) == 0
4 || \at(X, Here) != 0; */
5 _meta_2: X = 4;
6 /*@ assert \at(X, _meta_2) == 0
7 || \at(X, Here) != 0; */
8 _meta_3: X = 0;
9 /*@ assert \at(X, _meta_3) == 0

10 || \at(X, Here) != 0; */
11 //Failure
12 }

Virgile Robles (CEA List, LSL) Spec. and Verif. of High-Level Properties December 6th, 2018 10 / 14

Automatic Verification of Meta-properties (4/4)
Specification-only functions: use assigns clause for writing context

1 /*@
2 behavior BA:
3 assumes PA(params);
4 assigns XA1, XA2;
5 behavior BB:
6 assumes PB(params);
7 assigns XB;
8 */
9 extern void g(params);

10

11 void f() {
12 g(act_params);
13 }
14

15 /*@ meta \writing(f),
16 \written != &glob;
17 */

1 /*@
2 behavior BA:
3 assumes PA(params);
4 assigns XA1, XA2;
5 behavior BB:
6 assumes PB(params);
7 assigns XB;
8 */
9 extern void g(params);

10

11 void f() {
12 g(act_params);
13 /*@ assert PA(act_parms)
14 ⇒ &XA1 != &glob; */
15 /*@ assert PA(act_parms)
16 ⇒ &XA2 != &glob; */
17 /*@ assert PB(act_parms)
18 ⇒ &XB != &glob; */
19 }

Virgile Robles (CEA List, LSL) Spec. and Verif. of High-Level Properties December 6th, 2018 11 / 14

Back to the Confidentiality Case Study
The confidentiality case study was:

Implemented in C
Partially specified with ACSL contracts
Fully specified with meta-properties

Some of the meta-properties:
Public allocated pages cannot be modified by private agents
Confidentiality levels can only be modified by encryption/decryption
Unallocated pages cannot be read from
Only the allocation/deallocation functions can change the status of a
page

Verification results:
Transformation time: < 5s
290 proof obligations
Automatically proved in ≈ 1m with Alt-Ergo

Virgile Robles (CEA List, LSL) Spec. and Verif. of High-Level Properties December 6th, 2018 12 / 14

Conclusion
Contributions:

More expressive power: see case study
High-level view of properties established on a software module
Ease development: automatically check if a property is maintained
after an update (of the code or of a function contract)

MetAcsl

Future Work:
Tackle more realistic case studies
Enrich meta-properties where needed
Prove soundness of transformation

Virgile Robles (CEA List, LSL) Spec. and Verif. of High-Level Properties December 6th, 2018 13 / 14

Conclusion

Contributions:
More expressive power: see case study
High-level view of properties established on a software module
Ease development: automatically check if a property is maintained
after an update (of the code or of a function contract)

For more details, see:
MetAcsl: Specification and Verification of High-Level Properties,
(submitted for TACAS 2019, arXiv:1811.10509)
https://github.com/Firobe/metacsl_examples

Virgile Robles (CEA List, LSL) Spec. and Verif. of High-Level Properties December 6th, 2018 14 / 14

https://github.com/Firobe/metacsl_examples

