Quantum Computation Model and Programming Paradigm

Benoît Valiron
CentraleSupélec - LRI

Journées LTP, 6 Décembre 2018

Big Picture: Quantum Computer

Classical unit $=$ regular computer
Communicates with the coprocessor

Quantum unit = blackbox Contains a quantum memory

Getting faster algorithms for conventional problems

Big Picture: Quantum Computer

You can access one now!
https://quantumexperience.ng.bluemix.net/qx

Big Picture: Quantum Computer

A small memory-chip inside a big fridge

Big Picture: Quantum Computer

What are quantum algorithms good for?

- factoring !
- for breaking modern cryptography
- simulating quantum systems !
- for more efficient molecule distillation procedure
- solving linear systems !
- for high-performance computing
- solving optimization problems
- for big learning
- ... more than 300 algorithms:
http://math.nist.gov/quantum/zoo/

Plan

1. Quantum memory
2. Quantum / Classical interaction
3. Internals of algorithms
4. Coding quantum algorithms
5. The language Quipper
6. A formalization: Proto-Quipper
7. Conclusion

Plan

1. Quantum memory
2. Quantum / Classical interaction
3. Internals of algorithms
4. Coding quantum algorithms
5. The language Quipper
6. A formalization: Proto-Quipper
7. Conclusion

Quantum memory

A quantum memory with n quantum bits is a complex combination of strings of n bits. E.g. for $n=3$:

$$
\begin{array}{ll}
& \alpha_{0} \cdot 000 \\
+ & \alpha_{1} \cdot 001 \\
+ & \alpha_{2} \cdot 010 \\
+ & \alpha_{3} \cdot 011 \\
+ & \alpha_{4} \cdot 100 \\
+ & \alpha_{5} \cdot 101 \\
+ & \alpha_{6} \cdot 110 \\
+ & \alpha_{7} \cdot 111
\end{array}
$$

with $\left|\alpha_{0}\right|^{2}+\left|\alpha_{1}\right|^{2}+\left|\alpha_{2}\right|^{2}+\left|\alpha_{3}\right|^{2}+\left|\alpha_{4}\right|^{2}+\left|\alpha_{5}\right|^{2}+\left|\alpha_{6}\right|^{2}+\left|\alpha_{7}\right|^{2}=1$.
(alike probabilities with complex numbers...)

Quantum memory

The operation one can perform on the memory are of three kinds:

1. Initialization/creation of a new quantum bit in a given state:

	$\alpha_{0} \cdot 00$		
+			
$\alpha_{1} \cdot 01$			
+	+	$\alpha_{1} \cdot 010$	
	$\alpha_{2} \cdot 10$		
+	+	$\alpha_{2} \cdot 100$	
$\alpha_{3} \cdot 11$		+	$\alpha_{3} \cdot 110$

Quantum memory

The operation one can perform on the memory are of three kinds:

1. Initialization/creation of a new quantum bit in a given state:

Quantum memory

The operation one can perform on the memory are of three kinds:
2. Measurement. Measuring first qubit:

$$
\begin{aligned}
& \\
& \\
& \alpha_{0} \cdot 00 \\
& \alpha_{1} \cdot 01 \\
& \\
& \alpha_{2} \cdot 10 \\
& \alpha_{3} \cdot 11
\end{aligned} \quad\left\{\begin{aligned}
\alpha_{0} \cdot 00 \\
+\alpha_{1} \cdot 01
\end{aligned} \quad \text { (prob. }\left|\alpha_{0}\right|^{2}+\left|\alpha_{1}\right|^{2}\right)
$$

modulo renormalization.

Quantum memory

The operation one can perform on the memory are of three kinds:
2. Measurement. Measuring second qubit:

$$
+\quad \begin{array}{lll}
& \alpha_{0} \cdot 00 \\
+ & \alpha_{1} \cdot 10 \\
& +\alpha_{3} \cdot 11
\end{array} \quad\left\{\begin{aligned}
& \alpha_{0} \cdot 00 \\
&+\alpha_{2} \cdot 10\left(\text { prob. }\left|\alpha_{0}\right|^{2}+\left|\alpha_{2}\right|^{2}\right) \\
& \\
&+\alpha_{1} \cdot 01 \\
&+\alpha_{3} \cdot 11\text { (prob. } \left.\left|\alpha_{1}\right|^{2}+\left|\alpha_{3}\right|^{2}\right)
\end{aligned}\right.
$$

modulo renormalization.

Quantum memory

The operation one can perform on the memory are of three kinds:
3. Unitary operations. Linear maps

- preserving norms,
- preserving orthogonality,
- reversible.
E.g. the N-gate on one quantum bit (flip). On the first qubit:

	$\alpha_{0} \cdot 00$		
+	$\alpha_{1} \cdot 01$		
+	$\alpha_{2} \cdot 10$		
+	+	$\alpha_{1} \cdot 11$	
+	+	$\alpha_{2} \cdot 00$	
$\alpha_{3} \cdot 11$		+	$\alpha_{3} \cdot 01$

Quantum memory

The operation one can perform on the memory are of three kinds:
3. Unitary operations.
E.g. the Hadamard gate on one quantum bit. Sends

$$
\begin{aligned}
& 0 \longmapsto \frac{\sqrt{2}}{2} \cdot 0+\frac{\sqrt{2}}{2} \cdot 1 \\
& 1 \longmapsto \quad \longmapsto \frac{\sqrt{2}}{2} \cdot 0-\frac{\sqrt{2}}{2} \cdot 1
\end{aligned}
$$

When applied on the first qubit:

$$
\begin{array}{r}
\alpha_{0} \cdot 01 \\
+\quad \alpha_{1} \cdot 10
\end{array} \quad+\begin{aligned}
& \alpha_{0} \cdot\left(\frac{\sqrt{2}}{2} \cdot 01+\frac{\sqrt{2}}{2} \cdot 11\right) \\
& \alpha_{1} \cdot\left(\frac{\sqrt{2}}{2} \cdot 00-\frac{\sqrt{2}}{2} \cdot 10\right)
\end{aligned}
$$

Quantum memory

The operation one can perform on the memory are of three kinds:
3. Unitary operations.
E.g. the Hadamard gate on one quantum bit. Sends

$$
\begin{aligned}
& 0 \longmapsto \frac{\sqrt{2}}{2} \cdot 0+\frac{\sqrt{2}}{2} \cdot 1 \\
& 1 \longmapsto \frac{\sqrt{2}}{2} \cdot 0-\frac{\sqrt{2}}{2} \cdot 1
\end{aligned}
$$

When applied on the first qubit:

$$
\begin{aligned}
& \alpha_{0} \frac{\sqrt{2}}{2} \cdot 01
\end{aligned}
$$

Quantum memory

The operation one can perform on the memory are of three kinds:
3. Unitary operations.

They can create superposition. . .

... or remove it

$$
\begin{array}{r}
\quad \frac{\sqrt{2}}{2} \cdot 1100 \\
+\quad \\
\frac{\sqrt{2}}{2} \cdot 1110
\end{array} \longmapsto \quad 1100
$$

Quantum memory

The operation one can perform on the memory are of three kinds:
3. Unitary operations.

They can simulate classical operations:

- Bit-flip (N-gate).
- Tests (Controlled operations). E.g. Controlled-not. Second qubit is controlling:

$\alpha_{0} \cdot 00$		$\alpha_{0} \cdot 00$			$\alpha_{0} \cdot 00$
$+\alpha_{1} \cdot 01$	$+$	$\alpha_{1} \cdot 11$		+	$\alpha_{3} \cdot 01$
$+\alpha_{2} \cdot 10$	+	$\alpha_{2} \cdot 10$		+	$\alpha_{2} \cdot 10$
$+\alpha_{3} \cdot 11$	+	$\alpha_{3} \cdot 01$		$+$	$\alpha_{1} \cdot 11$

Quantum memory

The co-processor has an internal (quantum) memory.

- Classical data can transparently flow in.
- Internal operations are local.
- Retrieval of quantum information is probablistic and modify the global state.

In particular:

- The quantum memory has to be permanent.
- To act on quantum memory, classical operations have to lifted.
- This is potentially expensive.

Quantum memory: hardware

Quantum data: encoded on the state of quantum particles.

- E.g. nucleus of an atom:

The histidine as a 12 -qubit memory.

The perfluorobutadienyl iron complex as a 7-qubit memory.

- E.g. Photon polarization.
- E.g. Electrons (in superconducting devices)...

Problems to overcome: Scalability, decoherence.
Nonetheless, we are already post-quantum...

Quantum memory: hardware

Many experts predict a quantum computer capable of effectively breaking public key cryptography within'[a few decadēs], and therefore NSA believes it is important to address that concern. suite-and-quantum-computing-faq.cfm

Atcos
Microsoft
Br는

Plan

1. Quantum memory
2. Quantum / Classical interaction
3. Internals of algorithms
4. Coding quantum algorithms
5. The language Quipper
6. A formalization : Proto-Quipper
7. Conclusion

Quantum / Classical interaction

Typical execution flow:

Quantum / Classical interaction

Stream of instructions

- Local actions on one (or two) qubit(s) at a time
- Limited moving of qubits
- No copying

(ion trap)

Quantum / Classical interaction

Stream of instructions

- Local actions on one (or two) qubit(s) at a time
- Limited moving of qubits
- No copying

dots \equiv ions \equiv qubits
action \equiv pulses through wires

Quantum / Classical interaction

Stream of instructions

- Series of elementary actions applied on the quantum memory
- Summarized with a quantum circuit.
- wire \equiv qubit, box \equiv action, time flows left-to-right

No "quantum loop" or "conditional escape".

Quantum / Classical interaction

Quantum / Classical interaction

Some algorithms follow a simple scheme

Others are following a more adaptative scheme:

This is where quantum circuits differ from hardware design.
One cannot draw a quantum circuit once and for all.

Quantum / Classical interaction

A sound model of computation: Interaction with the quantum memory seen as an I/O side effect

Circ a := Empty a
| Write Gate (Circ a)
| Read Wire (Bool -> (Circ a))

- Output: emit gates to the co-processor
- Input: emit a read even to the co-processor, with a call-back function

Representing circuits

- static circuits: lists of gates
- dynamic circuits: trees of gates.

Quantum / Classical interaction

Moral

- Distinction parameter / input
- Circuits might be dynamically generated
- Parameters $=$ govern the shape and size of the circuit
- Model of computation : specialized I/O side-effect

Plan

1. Quantum memory
2. Quantum / Classical interaction
3. Internals of algorithms
4. Coding quantum algorithms
5. The language Quipper
6. A formalization : Proto-Quipper
7. Conclusion

Internals of algorithms

The techniques used to described quantum algorithms are diverse.

1. Quantum primitives.

- Phase estimation.

Assuming $\omega=0 . \mathrm{xy}$, we want

$$
\begin{aligned}
& \rho_{0}\left(e^{2 \pi i \mathrm{xy}}\right)^{0} \cdot 00 \\
+ & \rho_{1}\left(e^{2 \pi i \mathrm{xy}}\right)^{1} \cdot 01 \\
+ & \rho_{2}\left(e^{2 \pi i \mathrm{xy}}\right)^{2} \cdot 10 \\
+ & \rho_{3}\left(e^{2 \pi i \mathrm{xy}}\right)^{3} \cdot 11
\end{aligned}
$$

Moving information from coefficients to basis vectors

Internals of algorithms

The techniques used to described quantum algorithms are diverse.

1. Quantum primitives.

- Phase estimation.
- Amplitude amplification.

Qubit 3 in state 1 means good.

$$
\begin{array}{rll}
& \rho_{0} e^{i \phi_{0}} \cdot 000 \\
+ & \rho_{1} e^{i \phi_{1}} \cdot 011 \\
+ & \rho_{2} e^{i \phi_{2}} \cdot 100 \\
+ & \rho_{3} e^{i \phi_{3}} \cdot 110 & +\quad \rho_{1} e^{i \phi_{0}} \cdot 000 \\
i \phi_{1} \cdot 011 \\
+ & \rho_{2} e^{i \phi_{2}} \cdot 100 \\
\rho_{3} e^{i \phi_{3}} \cdot 110
\end{array}
$$

Increasing the probability of measuring the "good" states

Internals of algorithms

The techniques used to described quantum algorithms are diverse.

1. Quantum primitives.

- Phase estimation.
- Amplitude amplification.
- Quantum walk.

Internals of algorithms

The techniques used to described quantum algorithms are diverse.

1. Quantum primitives.

- Phase estimation.
- Amplitude amplification.
- Quantum walk.

After 5 steps of a probabilistic walk:

Internals of algorithms

The techniques used to described quantum algorithms are diverse.

1. Quantum primitives.

- Phase estimation.
- Amplitude amplification.
- Quantum walk.

After 5 steps of a quantum walk:

Internals of algorithms

The techniques used to described quantum algorithms are diverse.
2. Oracles.

- Take a classical function $f:$ Bool $^{n} \rightarrow$ Bool m.
- Construct

$$
\begin{aligned}
\bar{f}: \text { Bool }^{n+m} & \longrightarrow \text { Bool }^{n+m} \\
(x, y) & \longmapsto(x, y \oplus f(x))
\end{aligned}
$$

- Build the unitary U_{f} acting on $n+m$ qubits computing \bar{f}.

Internals of algorithms

The techniques used to described quantum algorithms are diverse.
2. Oracles, in real life

```
calcRweights y nx ny lx ly k theta phi =
    let (xc',yc') = edgetoxy y nx ny in
    let xc = (xc'-1.0)*lx - ((fromIntegral nx)-1.0)*lx/2.0 in
    let yc = (yc'-1.0)*ly - ((fromIntegral ny)-1.0)*ly/2.0 in
    let (xg,yg) = itoxy y nx ny in
    if ( }\textrm{xg}==\textrm{nx}\mathrm{ ) then
            let i = (mkPolar ly (k*xc*(cos phi)))*(mkPolar 1.0 (k*yc*(sin phi)))*
                        ((sinc (k*ly*(sin phi)/2.0))+0.0) in
        let r = ( cos(phi) +k*lx )*((cos (theta - phi))/lx+0.0) in i*r
    else if ( }\textrm{xg}==2*\textrm{nx}-1) the
            let i = (mkPolar ly (k*xc*cos(phi)))*(mkPolar 1.0 (k*yc*sin(phi)))*
                            ((sinc (k*ly*sin(phi)/2.0))+0.0) in
            let r = ( cos(phi)+(-k*lx))*((cos (theta - phi))/lx+0.0) in i*r
    else if ( (yg==1) and ( }\textrm{xg}<\textrm{nx}\mathrm{ ) ) then
            let i = (mkPolar lx (k*yc*sin(phi)))*(mkPolar 1.0 (k*xc*cos(phi)))*
                    ((sinc (k*lx*(cos phi)/2.0))+0.0) in
            let r = ( (- sin phi) +k*ly )*((cos(theta - phi))/ly+0.0) in i*r
    else if ( (yg==ny) and (xg<nx) ) then
            let i = (mkPolar lx (k*yc*sin(phi)))*(mkPolar 1.0 (k*xc*cos(phi)))*
                ((sinc (k*lx*(cos phi)/2.0))+0.0) in
            let r = ( (- sin phi) +(- k*ly) )*((cos(theta - phi)/ly)+0.0) in i*r
    else 0.0+0.0
```


Internals of algorithms

The techniques used to described quantum algorithms are diverse.
3. Blocks of loosely-defined low-level circuits.

- This is not a formal specification!
- Notion of "box"
- Size of the circuit depends on parameters

Internals of algorithms

The techniques used to described quantum algorithms are diverse.
4. High-level operations on circuit:

- Circuit inversion.

(the circuit needs to be reversible...)
- Repetition of the same circuit.

(needs to have the same input and output arity...)
- Controlling of circuits

Internals of algorithms

The techniques used to described quantum algorithms are diverse.
5. Classical processing.

- Generating the circuit...
- Computing the input to the circuit.
- Processing classical feedback in the middle of the computation.
- Analyzing the final answer (and possibly starting over).

Internals of algorithms

Summary

- Need of automation for oracle generation
- Distinction parameter / input
- Circuits as inputs to other circuits
- Regularity with respect to the size of the input
- Circuit construction:
- Using circuit combinators: Inversion, repetition, control, etc
- Procedural
- Lots of classical processing!

Plan

1. Quantum memory
2. Quantum / Classical interaction
3. Internals of algorithms
4. Coding quantum algorithms
5. The language Quipper
6. A formalization : Proto-Quipper
7. Conclusion

Coding algorithms

A very recent topic

- From complexity analysis to concrete circuits
- No machine yet, but
- Resource analysis
- Optimization
- Emulation
- Scalable languages: in the last 5 years
- Python's libraries/DSL: Project-Q, QISKit, etc
- Liqui $\rangle, \mathrm{Q} \#$ (Microsoft)
- Quipper, QWIRE (academic)

Coding algorithms

Imperative programming and the quantum I/O

- Input/Output "as usual": with commands
- Measurement returns a boolean (probabilistically)
- If well-behaved, provides high-level circuit operations
- Example with Project-Q:
def circuit(q1,q2):
H | q1
with Control(q1):
X | q2
$\mathrm{x}=$ Measure | q 1
eng.flush()
if x :
Y | q2
else:
Z | q2

Coding algorithms

Functional programming and the quantum I/O

- Monadic approach to encapsulate I/O
- Inside the monad: quantum operations
- Outside the monad: classical operations and circuit manipulation
- Qubits only live inside the monad

Coding algorithms

Dealing with run-time errors

- Imperative-style: Quantum I/O is a memory mapping
$-\rightarrow$ Type-systems based on separation logic should work
- Hoare logic or Contracts
- Functional-style:
- Non-duplicable quantum data: linear type system
- Dependent-types

Plan

1. Quantum memory
2. Quantum / Classical interaction
3. Internals of algorithms
4. Coding quantum algorithms
5. The language Quipper
6. A formalization : Proto-Quipper
7. Conclusion

The Language Quipper

- Embedded language in Haskell
- Logical description of hierarchical circuits
- Well-founded monadic semantics. Allow to mix two paradigms
- Procedural : describing low-level circuits
- Declarative : describing high-level operation
- Parameter/input distinction
- Parameter : determine the shape of the circuit
- Input: determine what goes in the wires

The Language Quipper

A function in Quipper is a map

$$
\text { A } \rightarrow \text { Circ B }
$$

- Input something of type A
- Output something of type B
- As a side effect, generate a circuit snippet

Or

- Input a value of type A
- Output a "computation" of type Circ B

Families of circuits

- represented with lists, e.g. [Qubit] -> Circ [Qubit]

The Language Quipper

New base type: Qubit \equiv wire
Building blocks

- qinit : : Bool -> Circ Qubit
- qdiscard :: Qubit -> Circ ()
- hadamard :: Qubit -> Circ Qubit
- hadamard_at :: Qubit -> Circ ()

Composition of functions \equiv composition of circuits
Bool $\xrightarrow{\text { qinit }}$ Circ Qubit

$$
\text { Qubit } \xrightarrow{\text { hadamard }} \text { Circ Qubit }
$$

High-level circuit combinators

- controlled :: Circ a -> Qubit -> Circ a
- inverse :: (a -> Circ b) -> b -> Circ a

Coding quantum algorithms: Quipper

import Quipper

```
w :: (Qubit,Qubit) -> Circ (Qubit,Qubit)
W = named_gate "W"
toffoli :: Qubit -> (Qubit,Qubit) -> Circ Qubit
toffoli d (x,y) =
    qnot d 'controlled' x .==. 1 .&&. y .==. 0
eiz_at :: Qubit -> Qubit -> Circ ()
eiz_at d r =
    named_gate_at "eiZ" d 'controlled' r .==. 0
circ :: [(Qubit,Qubit)] -> Qubit -> Circ ()
circ ws r = do
    label (unzip ws,r) (("a","b"),"r")
    d <- qinit 0
    mapM_ w ws
    mapM_ (toffoli d) ws
    eiz_at d r
    mapM_ (toffoli d) (reverse ws)
    mapM_ (reverse_generic w) (reverse ws)
    return ()
```


main = print_generic EPS circ (replicate 3 (qubit,qubit)) qubit

Coding quantum algorithms: Quipper

Result (3 wires):

Coding quantum algorithms: Quipper

Result (30 wires):

Coding quantum algorithms: Quipper

Built on Haskell's static type system, but

- unchecked linearity
controlled (qnot x) x
- uncaught shape mismatches
- Consider f : : [Qubit] -> Circ [Qubit]
- Assume that length (fl) $=2 *$ length 1
- Then reverse f cannot be applied on lists of odd lengths

Towards tools for program analysis

One cannot "read" the quantum memory

- Testing / debugging expensive
- Probabilistic model
- What does it mean to have a "correct" implementation?

Emulation of circuits

- Only for "small" instances
- Taming the testing problem
- For experimentation of error models

Formal methods

- Type systems: capture errors at compile-times
- Static analyis tools: analyze quantum programs
- Proof assistants: verify code transformation and optimization

Towards a quantum compiler

Current quantum programming languages maps to quantum circuits

- native representation structures of quantum algorithms
- Good enough for visualization, numerical emulation
- But very rigid:
- accounts for one computational model...
- . . . but misses other models
- occults intrinsic parallelism of computation
- fails to capture geometrical properties of backends
\rightarrow Grid-like physical layout, graph-states, etc.
- Ad-hoc graphical notation

Towards a quantum compiler

A missing piece in a compilation stack

High-level	Quipper, Liqui \rangle, Project-Q...
	Circuits
	QASM
	Missing IR
Hardware	Physical, noisy qubits

Plan

1. Quantum memory
2. Quantum / Classical interaction
3. Internals of algorithms
4. Coding quantum algorithms
5. The language Quipper
6. A formalization : Proto-Quipper
7. Conclusion

Proto-Quipper

A core subset of Quipper [Ross 2015]: A lambda-calculus

- Focused on the circuit-description part of the language
\rightarrow no measurement
- Simple linear type system

$$
\begin{aligned}
& A, B \quad::=\text { qubit }|1| A \otimes B \mid \text { bool }|A \multimap B|!A \mid \operatorname{Circ}(T, U) \\
& T, U \quad:=\text { qubit }|1| T \otimes U
\end{aligned}
$$

- A special class of values for representing circuits
\rightarrow Built on an algebra of circuits
- Built-in circuit operators

$$
\begin{array}{ll}
\text { box } & :!(T \multimap U) \multimap!\operatorname{Circ}(T, U) \\
\text { unbox } & : \operatorname{Circ}(T, U) \multimap!(T \multimap U) \\
\text { rev } & : \operatorname{Circ}(U, T) \multimap!\operatorname{Circ}(T, U)
\end{array}
$$

Proto-Quipper

Circuits in Proto-Quipper
Formalized as a pair $(\mathcal{S}, \mathcal{Q})$ of enumerable sets

- \mathcal{S} : set of circuit states
- \mathcal{Q} : set of wire identifiers
- Operators relating them :

$$
\begin{array}{lr}
\text { New }: \mathcal{P}_{f}(\mathcal{Q}) \rightarrow \mathcal{S} & \text { In }: \mathcal{S} \rightarrow \mathcal{P}_{f}(\mathcal{Q}) \\
\text { Rev }: \mathcal{S} \rightarrow \mathcal{S} & \text { Out }: \mathcal{S} \rightarrow \mathcal{P}_{f}(\mathcal{Q}) \\
\text { Append }: \mathcal{S} \times \mathcal{S} \times \operatorname{Bij}_{f}(\mathcal{Q}) \hookrightarrow \mathcal{S} \times \operatorname{Bij}_{f}(\mathcal{Q})
\end{array}
$$

- Various equations, such as

$$
\text { In } \circ \text { Rev }=\text { Out, } \quad \text { In } \circ \text { New }=\text { Out } \circ \text { New }=\text { id }
$$

Proto-Quipper

Circuits versus functions

- A value of type $U \multimap T$ is a suspended computation
- A value of type $\operatorname{Circ}(T, U)$ is a circuit and corresponds to an element of \mathcal{S}.

In particular

- One can access the "content" of a circuit
- The term operator rev = algebra operator Rev
- Unboxing a circuit $=$ "running it" $=$ using Append

In a sense

- $\operatorname{Circ}(T, U)$ is the type for precomputed, first-order functions on quantum data
- whereas $T \multimap U$ could contain e.g. non-terminating functions

Proto-Quipper

Linear type system

- quantum data is non-duplicable
- Subtyping relation : "A duplicable element can be used only once"

$$
!A<: A
$$

An opaque type for qubits

- no constructors
- only accessible through circuit combinators
- or as variables

Absence of inductive types

- Only one possible shape of value for a given first-order type qubit \otimes bool \quad qubit \otimes (qubit \otimes qubit $)$

Limitations of Proto-Quipper

Absence of lists or other inductive types

- Good : unboxing sends $\operatorname{Circ}(T, U)$ to total functions $T \multimap U$
- Bad : An element of type $\operatorname{Circ}(T, U)$ is one circuit
- No representation of families of circuits, as in Quipper

Adding lists

- Makes [qubit] \multimap [qubit] represent families of circuits (Note: not monadic...)
- But Circ([qubit], [qubit])
- is still one circuit of \mathcal{S} with a fixed number of wires
- ruins the totality of unboxing and reversing
- makes boxing not ill-defined : which circuit from the family ?

Mitigating Limitations of Proto-Quipper

To mitigate problems with lists: Two main solutions
1 (not ours) - Use of dependent types

- Types to correctly specify box, unbox and rev
- Burden of proof of correctness on the programmer
- Require a full first-order linear logic

2 (ours) - Only extend type system with a notion of shape

- Captures the structure of a value of first-order type
- Boxing now takes as arguments
- A function! $(T \multimap U)$
- A shape for T
- Does not solve the run-time error with unbox and rev
- Allow run-time errors related to shapes (and only those)
- Leave proof of correctness to auxiliary tool
- Joint work on this topic between LRI and CEA/Nano-Innov

Plan

1. Quantum memory
2. Quantum / Classical interaction
3. Internals of algorithms
4. Coding quantum algorithms
5. The language Quipper
6. A formalization : Proto-Quipper
7. Conclusion

Quantum @ LRI

Thematics

- Formal methods (Benoît Valiron, Chantal Keller, Thibault Balabonski)
- Scientific computing and HPC (Benoît Valiron, Marc Baboulin)

Students

- Timothée Goubault de Brugière : Thèse CIFRE/Atos
\rightarrow Synthesis of unitaries: Householder decomposition, BFGS
- Dong-Ho Lee : Thèse CEA (just starting)
\rightarrow Formalization of Quipper-like languages
Projects
- ANR SoftQPro, European project Quantex
- Partnership with CEA-Nano-Innov, Atos/Bull, LORIA (Nancy)

Postdocs

- We have funding for at least 2 one-year postdocs!

Quantum @ LRI

We have funding for postdocs!

