Quantum Computation

Model and Programming Paradigm

Benoit Valiron
CentraleSupélec — LRI

Journées LTP, 6 Décembre 2018

Big Picture: Quantum Computer

Classical unit = regular computer
Communicates with the coprocessor

V%

Quantum unit = blackbox
Contains a quantum memory

Getting faster algorithms for conventional problems

Big Picture: Quantum Computer

You can access one now !

https://quantumexperience.ng.bluemix.net/qgx

Big Picture: Quantum Computer

A small memory-chip inside a big fridge

QUANTUM

COMPUTER

Big Picture: Quantum Computer

What are quantum algorithms good for?

e factoring !

— for breaking modern cryptography

e simulating quantum systems !

— for more efficient molecule distillation procedure

e solving linear systems !

— for high-performance computing

e solving optimization problems

— for big learning

e ... more than 300 algorithms:
http://math.nist.gov/quantum/zoo/

= W N

.

Plan

Quantum memory

Quantum / Classical interaction
Internals of algorithms

Coding quantum algorithms
The language Quipper

A formalization : Proto-Quipper

Conclusion

= W N

.

Plan

Quantum memory

Quantum / Classical interaction
Internals of algorithms

Coding quantum algorithms
The language Quipper

A formalization : Proto-Quipper

Conclusion

Quantum memory

A quantum memory with n quantum bits is a complex combination of
strings of n bits. E.g. for n = 3:

ap - 000
aq - 001
ag - 010
a3 - 011
ay - 100
as - 101
ag - 110
a7 - 111

+ 4+ + + 4+ +

with |aol? + |eu |* + |az]? + |as|? + |au]® + [as]? + |ae|® + [ar[? = 1.

(alike probabilities with complex numbers. . .)

Quantum memory

The operation one can perform on the memory are of three kinds:

1. Initialization/creation of a new quantum bit in a given state:

(7)) - 00 Ck()‘OOO

+ a7 01 + «p:-010
—

+ Q9 10 + 9 - 100

+ a3~ 11 + a3 110

Quantum memory

The operation one can perform on the memory are of three kinds:

1. Initialization/creation of a new quantum bit in a given state:

) - 00 07y - 001

+ «a1-01 + a1 -011
—

+ a9 10 + «a9-101

+ 043'11 + 043'111

10

Quantum memory

The operation one can perform on the memory are of three kinds:

2. Measurement. Measuring first qubit:

(

Q- 00
an - 00 (prob. |ag|* + [as]?)

0 + a7 01

+ ap- 01
— <
+ Q9 10

. a9 - 10
o (prob. |az|? + |az[?)

+ a3 11

modulo renormalization.

11

Quantum memory

The operation one can perform on the memory are of three kinds:

2. Measurement. Measuring second qubit:

(

Q- 00
(prob. |ao|? + |az2/?)

+ Q- 01
— <
+ a9 - 10

. aq - 01
Toasn il (prob. |ax | + [as|?)

+ a3 11

modulo renormalization.

12

Quantum memory

The operation one can perform on the memory are of three kinds:

3. Unitary operations. Linear maps
® preserving norms,
e preserving orthogonality,
e reversible.

E.g. the N-gate on one quantum bit (flip). On the first qubit:

CV(j)'OO Cko'lO

+ «q-01 + «q-11
—

+ &2'10 + Oég'OO

+ «a3-11 + «a3-01

13

Quantum memory

The operation one can perform on the memory are of three kinds:

3. Unitary operations.

E.g. the Hadamard gate on one quantum bit. Sends

0 — 2.0 4 ¥2.4q

1 — ¥2.0 - ¥2.4q

When applied on the first qubit:

ap - 01 ap- (X201 + 2. 11)
— \/_
+ a1-10 + (Xl'(@-OO—TQ-lO)

14

Quantum memory

The operation one can perform on the memory are of three kinds:

3. Unitary operations.

E.g. the Hadamard gate on one quantum bit. Sends

0 —» ¥2.0 4+ ¥2.4

2 2
1 — 2.0 — 2.4
When applied on the first qubit:
&0@'01
ag - 01 + a2 11
—
+ o110 + o ¥2-00
+ %210

15

Quantum memory

The operation one can perform on the memory are of three kinds:

3. Unitary operations.

They can create superposition. . .

Y2 .1100
1100 +—
+ Y2.1110
...or remove It
Y2 . 1100
7 — 1100
+ 21110

16

Quantum memory

The operation one can perform on the memory are of three kinds:

3. Unitary operations.
They can simulate classical operations:
e Bit-flip (N-gate).
e Tests (Controlled operations). E.g. Controlled-not. Second
qubit is controlling:

(870) - 00 870 - 00 (870) - 00

+ 041'01 + a1-11 + &3*01
— =

—+ OQ'].O + 042'10 + 042'10

+ a3-11 + 043'01 + Oél°11

17

Quantum memory

The co-processor has an internal (quantum) memory.
e Classical data can transparently flow in.
e Internal operations are local.

e Retrieval of quantum information is probablistic and modify the
global state.

In particular:
e The quantum memory has to be permanent.
e To act on quantum memory, classical operations have to lifted.

e This is potentially expensive.

18

Quantum memory: hardware
Quantum data: encoded on the state of quantum particles.

e E.g. nucleus of an atom:

oo
@/ ah Co

CsHs o

The perfluorobutadienyl iron complex as a

The histidine as a 12-qubit memory.

7-qubit memory.
e E.g. Photon polarization.

e E.g. Electrons (in superconducting devices). . .

Problems to overcome: Scalability, decoherence.

Nonetheless, we are already post-quantum. ..

19

Quantum memory: hardware

— AUOS

e -
Microsoft Bulk

https://www.iad.gov/iad/library/ia-guidancefia=sotutions-
suite-and-quantum-computing-fag.cfm

20

= W N

.

Plan

Quantum memory

Quantum / Classical interaction
Internals of algorithms

Coding quantum algorithms
The language Quipper

A formalization : Proto-Quipper

Conclusion

21

Quantum / Classical interaction

Typical execution flow:

Program

Runtime

Classical Unit

Stream of
instructions

Feedback

Quantum
Computation

Quantum Unit

22

Quantum / Classical interaction

Stream of instructions
e Local actions on one (or two) qubit(s) at a time
e Limited moving of qubits

e No copying

WA W77

........................
.
-
. At et Bl o o -
. .
.
.

(ion trap)

23

Quantum / Classical interaction

Stream of instructions
e Local actions on one (or two) qubit(s) at a time

e Limited moving of qubits

e No copying & //
é : _//
/ : \

dots = ions = qubits action = pulses through wires

24

Quantum / Classical interaction

Stream of instructions
e Series of elementary actions applied on the quantum memory
e Summarized with a quantum circuit.
e wire = qubit, box = action, time flows left-to-right

()

H

o—
Input < T > Output

0}

S¥

\ /

No “quantum loop” or “conditional escape”.

25

Quantum / Classical interaction

Parameters - T~
to the problem \
Simple case/\

Input values Static circuit e —

& 4

Initializing
quantum
memory

Executing
the circuit

New input values Output values

26

Quantum / Classical interaction

Some algorithms follow a simple scheme

Imibahze R | Measure i,
: L quantum
Classical data guanium L]) — quantum set quantum
circuit memory

IMETIOTY MEemory

A 4

Others are following a more adaptative scheme:

PR o
\ m s e
F T
L]
/ \ I I
I i
1]
L} L] e
] .
-

1
!
7
£
T E——
-

\ ¥ j - L Rest of circuit depends
. [=1 — on the measure
Beginning of M easure and] e
Circuit classical feedback] P

This is where quantum circuits differ from hardware design.

One cannot draw a quantum circuit once and for all.

27

Quantum / Classical interaction

A sound model of computation:
Interaction with the quantum memory seen as an |/O side effect

Circ a := Empty a
| Write Gate (Circ a)
| Read Wire (Bool -> (Circ a))

e Output: emit gates to the co-processor

e Input: emit a read even to the co-processor, with a call-back
function

Representing circuits
e static circuits: lists of gates

e dynamic circuits: trees of gates.

28

Quantum / Classical interaction

Moral
e Distinction parameter / input
e Circuits might be dynamically generated
e Parameters = govern the shape and size of the circuit

e Model of computation : specialized |/O side-effect

29

= W N

.

Plan

Quantum memory

Quantum / Classical interaction
Internals of algorithms

Coding quantum algorithms
The language Quipper

A formalization : Proto-Quipper

Conclusion

30

Internals of algorithms

The techniques used to described quantum algorithms are diverse.

1. Quantum primitives.

e Phase estimation.

Assuming w = 0.xy, we want

p0(627rixy)0 - 00

+ pl(GQWixy)l . 01
, — 1. xy

T p2(€27mxy)2 .10

e pg(eZWixy)S ‘11

Moving information from coefficients to basis vectors

31

Internals of algorithms

The techniques used to described quantum algorithms are diverse.

1. Quantum primitives.
e Phase estimation.

e Amplitude amplification.

Qubit 3 in state 1 means good.

poe®o - 000 p0€'®0 . 000

+ pre*®t 011 + prer. o011
| — |

+ peet®2 . 100 + e’ .100

+ p3e’®3 . 110 + et 110

Increasing the probability of measuring the “good” states

32

Internals of algorithms

The techniques used to described quantum algorithms are diverse.

1. Quantum primitives.
e Phase estimation.
e Amplitude amplification.

e Quantum walk.

0 1 2 3 4 5! 6
15<—14 13 122 <—11<=—-10 9

33

00 <—— ~J

Internals of algorithms

The techniques used to described quantum algorithms are diverse.

1. Quantum primitives.
e Phase estimation.
e Amplitude amplification.

e Quantum walk.

After 5 steps of a probabilistic walk:

0.5

34

Internals of algorithms

The techniques used to described quantum algorithms are diverse.

1. Quantum primitives.
e Phase estimation.
e Amplitude amplification.

e Quantum walk.

After 5 steps of a quantum walk:

0.5

35

Internals of algorithms

The techniques used to described quantum algorithms are diverse.

2. Oracles.
e Take a classical function f : Bool™ — Bool™.

e Construct

f: Bool™™™ 5 Bool™™™

(z,y) +— (2,9 f(x))

e Build the unitary Uy acting on n + m qubits computing f.

36

Internals of algorithms

The techniques used to described quantum algorithms are diverse.

2. Oracles, in real life

calcRweights y nx ny 1x 1y k theta phi =
let (xc’,yc’) = edgetoxy y nx ny in
let xc = (xc’-1.0)*1x - ((fromIntegral nx)-1.0)*1x/2.0 in
let yc = (yc’-1.0)*1ly - ((fromIntegral ny)-1.0)*1y/2.0 in
let (xg,yg) = itoxy y nx ny in
if (xg == nx) then
let i = (mkPolar 1y (k*xc*(cos phi)))*(mkPolar 1.0 (k*yc*(sin phi)))*
((sinc (k*1ly*(sin phi)/2.0))+0.0) in
let r = (cos(phi)+k*1x)*((cos (theta - phi))/1x+0.0) in ix*r
else if (xg==2*nx-1) then
let i = (mkPolar 1y (k*xc*cos(phi)))*(mkPolar 1.0 (k*yc*sin(phi)))*
((sinc (k*1ly*sin(phi)/2.0))+0.0) in
let r = (cos(phi)+(- k*1x))*((cos (theta - phi))/1x+0.0) in i*r
else if ((yg==1) and (xg<nx)) then
let i = (mkPolar 1x (k*yc*sin(phi)))*(mkPolar 1.0 (k*xc*cos(phi)))x*
((sinc (k*1x*(cos phi)/2.0))+0.0) in
let r = ((- sin phi)+k*1ly)*((cos(theta - phi))/1ly+0.0) in i*r
else if (yg==ny) and (xg<nx)) then
let i = (mkPolar 1x (k*yc*sin(phi)))*(mkPolar 1.0 (k*xc*cos(phi)))x*
((sinc (k*1x*(cos phi)/2.0))+0.0) in
let r = ((- sin phi)+(- k*ly))*((cos(theta - phi)/ly)+0.0) in ix*r
else 0.0+0.0

~

37

Internals of algorithms

The techniques used to described quantum algorithms are diverse.

3. Blocks of loosely-defined low-level circuits.

ai

— W T T wt _
o []
by —— —
g ———
" 7

|0) O—D B—je 24t —D

e This is not a formal specification!
e Notion of “box”
e Size of the circuit depends on parameters

38

Internals of algorithms

The techniques used to described quantum algorithms are diverse.

4. High-level operations on circuit:

e Circuit inversion.

— — ’_ — —_— —
= e e | _|o w >

T T

(the circuit needs to be reversible. . .)

e Repetition of the same circuit.

S I N - S < M @) < m &)

(needs to have the same input and output arity. . .)

e Controlling of circuits

39

Internals of algorithms

The techniques used to described quantum algorithms are diverse.

5. Classical processing.
e Generating the circuit. . .
e Computing the input to the circuit.
e Processing classical feedback in the middle of the computation.

e Analyzing the final answer (and possibly starting over).

40

Internals of algorithms

Summary
e Need of automation for oracle generation
e Distinction parameter / input
e Circuits as inputs to other circuits
e Regularity with respect to the size of the input

e Circuit construction:
— Using circuit combinators: Inversion, repetition, control, etc

— Procedural

e Lots of classical processing!

41

= W N

.

Plan

Quantum memory

Quantum / Classical interaction
Internals of algorithms

Coding quantum algorithms
The language Quipper

A formalization : Proto-Quipper

Conclusion

42

Coding algorithms

A very recent topic
e From complexity analysis to concrete circuits

e No machine yet, but
— Resource analysis
— Optimization

— Emulation

e Scalable languages: in the last 5 years
— Python'’s libraries/DSL: Project-Q, QISKit, etc
— Liqui|), Q# (Microsoft)
— Quipper, QWIRE (academic)

43

Coding algorithms

Imperative programming and the quantum 1/O
e Input/Output “as usual”: with commands
e Measurement returns a boolean (probabilistically)
o |f well-behaved, provides high-level circuit operations
e Example with Project-Q:

def circuit(ql,q2):

H | ql

with Control(ql):
X | g2

x = Measure | ql

eng.flush()

if x:
Y | g2

else:
Z | q2

44

Coding algorithms

Functional programming and the quantum [/O
e Monadic approach to encapsulate |/O
e Inside the monad: quantum operations
e Qutside the monad: classical operations and circuit manipulation

e Qubits only live inside the monad

45

Coding algorithms

Dealing with run-time errors

e Imperative-style: Quantum I/O is a memory mapping
— — Type-systems based on separation logic should work

— Hoare logic or Contracts

e Functional-style:
— Non-duplicable quantum data: linear type system

— Dependent-types

46

= W N

.

Plan

Quantum memory

Quantum / Classical interaction
Internals of algorithms

Coding quantum algorithms
The language Quipper

A formalization : Proto-Quipper

Conclusion

47

The Language Quipper

Embedded language in Haskell
Logical description of hierarchical circuits

Well-founded monadic semantics. Allow to mix two paradigms
— Procedural : describing low-level circuits
— Declarative : describing high-level operation

Parameter/input distinction
— Parameter : determine the shape of the circuit
— Input : determine what goes in the wires

48

The Language Quipper

A function in Quipper is a map
A -> Circ B

e Input something of type A

e Output something of type B

e As a side effect, generate a circuit snippet
Or

e Input a value of type A

e Output a “computation” of type Circ B
Families of circuits

e represented with lists, e.g. [Qubit] -> Circ [Qubit]

49

The Language Quipper

New base type : Qubit = wire
Building blocks
e gqinit :: Bool -> Circ Qubit
e gdiscard :: Qubit -> Circ ()
e hadamard :: Qubit -> Circ Qubit
e hadamard_at :: Qubit -> Circ ()

Composition of functions = composition of circuits

qinit))
Bool —— Circ Qubit

hadamard

Qubit — Circ Qubit

High-level circuit combinators
e controlled :: Circ a -> Qubit -> Circ a

e inverse :: (a -> Circ b) -> b -> Circ a

50

Coding quantum algorithms: Quipper

import Quipper

W (Qubit,Qubit) -> Circ (Qubit,Qubit)
w = named_gate "W"
toffoli
toffoli d (x,y) =

gnot d ‘controlled‘ x .==.

eiz_at Qubit -> Qubit -> Circ ()
eiz_at d r =
named_gate_at "eiZ" d ‘controlled‘ r .==.

circ :: [(Qubit,Qubit)] -> Qubit -> Circ ()
circ ws r = do

label (unzip ws,r) (("a","b"),"r")

d <- ginit O

mapM_ w ws

mapM_ (toffoli d) ws

eiz_at d r

mapM_ (toffoli d) (reverse ws)

mapM_ (reverse_generic w) (reverse ws)

return ()

Qubit -> (Qubit,Qubit) -> Circ Qubit

0

a

by

az

oD
%

%

main = print_generic EPS circ (replicate 3 (qubit,qubit)) qubit

51

[4n)

eszt

[4n)

oD
%

[4A)
A\

Coding quantum algorithms: Quipper

Result (3 wires):

HH

—@

—@
=

HE
b

EH
b

N
N
AR
N>
N
N
o
Elai
AR
N>
N
N
AR\
N

ol

52

Coding quantum algorithms: Quipper

Result (30 wires):

53

Coding quantum algorithms: Quipper

Built on Haskell's static type system, but

e unchecked linearity

controlled (gnot x) X

e uncaught shape mismatches
— Consider £ :: [Qubit] -> Circ [Qubitl]
— Assume that length (f 1) = 2 * length 1

— Then reverse f cannot be applied on lists of odd lengths

54

Towards tools for program analysis

One cannot “read” the quantum memory
e Testing / debugging expensive
e Probabilistic model

e \What does it mean to have a “correct” implementation?

Emulation of circuits
e Only for “small” instances
e Taming the testing problem

e For experimentation of error models

Formal methods
e Type systems: capture errors at compile-times
e Static analyis tools: analyze quantum programs

e Proof assistants: verify code transformation and optimization

55

Towards a quantum compiler

Current quantum programming languages maps to quantum circuits
e native representation structures of quantum algorithms
e Good enough for visualization, numerical emulation

e But very rigid:
— accounts for one computational model. ..
— ... but misses other models
— occults intrinsic parallelism of computation

— fails to capture geometrical properties of backends
— Grid-like physical layout, graph-states, etc.

— Ad-hoc graphical notation

56

Towards a quantum compiler

A missing piece in a compilation stack
High-level Quipper, Liqui|), Project-Q. ..

Circuits

QASM

Missing IR

Error-corrected qubits

Hardware Physical, noisy qubits

57

= W N

.

Plan

Quantum memory

Quantum / Classical interaction
Internals of algorithms

Coding quantum algorithms
The language Quipper

A formalization : Proto-Quipper

Conclusion

58

Proto-Quipper

A core subset of Quipper [Ross 2015]: A lambda-calculus
e Focused on the circuit-description part of the language
— NnO measurement
e Simple linear type system

A,B == qubit|1|A® B|bool|A — B|!A|Circ(T,U)
T.U == qubit|1|T®U

e A special class of values for representing circuits
— Built on an algebra of circuits
e Built-in circuit operators

box . (T —o U) —o ICirc(T,U)
unbox : Circ(T,U) —o (T — U)
rev . Circ(U, T) —o !Circ(T,U)

59

Proto-Quipper

Circuits in Proto-Quipper

Formalized as a pair (S, Q) of enumerable sets
e § : set of circuit states
e O : set of wire identifiers
e Operators relating them :
New: Pr(Q) = S In:S — Ps(Q)

Rev:S — S Out : S = P¢(Q)

(
Append : S X S x Bij;(Q) — S x Bij;(Q)

e \arious equations, such as

In o Rev = Qut, In o New = Qut o New = id

60

Proto-Quipper

Circuits versus functions

e A value of type U — T’ is a suspended computation
e A value of type Circ(T,U) is a circuit and corresponds to an

element of §.
In particular

e One can access the “content” of a circuit
e The term operator rev = algebra operator Rev

e Unboxing a circuit = “running it" = using Append
In a sense

e Circ(T,U) is the type for
precomputed, first-order functions on quantum data

e whereas T' — U could contain e.g. non-terminating functions

61

Proto-Quipper

Linear type system
e quantum data is non-duplicable
e Subtyping relation : “A duplicable element can be used only once”

1A <: A

An opaque type for qubits

® no constructors
e only accessible through circuit combinators
e or as variables

Absence of inductive types

e Only one possible shape of value for a given first-order type

qubit ® bool qubit ® (qubit ® qubit)

62

Limitations of Proto-Quipper

Absence of lists or other inductive types
e Good : unboxing sends Circ(7T,U) to total functions T'— U

e Bad : An element of type Circ(T,U) is one circuit

— No representation of families of circuits, as in Quipper
Adding lists

e Makes [qubit] —o [qubit] represent families of circuits
(Note: not monadic. . .)

e But Circ(|qubit], [qubit])
— is still one circuit of S with a fixed number of wires
— ruins the totality of unboxing and reversing

— makes boxing not ill-defined : which circuit from the family 7

63

Mitigating Limitations of Proto-Quipper

To mitigate problems with lists: Two main solutions

1 (not ours) — Use of dependent types
e Types to correctly specify box, unbox and rev
e Burden of proof of correctness on the programmer
e Require a full first-order linear logic

2 (ours) — Only extend type system with a notion of shape
e Captures the structure of a value of first-order type

e Boxing now takes as arguments
— A function (T — U)
— A shape for T’
e Does not solve the run-time error with unbox and rev
— Allow run-time errors related to shapes (and only those)
— Leave proof of correctness to auxiliary tool

e Joint work on this topic between LRI and CEA/Nano-Innov

64

= W N

.

Plan

Quantum memory

Quantum / Classical interaction
Internals of algorithms

Coding quantum algorithms
The language Quipper

A formalization : Proto-Quipper

Conclusion

65

Quantum @ LRI

Thematics
e Formal methods (Benoit Valiron, Chantal Keller, Thibault Balabonski)
e Scientific computing and HPC (Benoit Valiron, Marc Baboulin)

Students
e Timothée Goubault de Brugiere : These CIFRE/Atos
— Synthesis of unitaries : Householder decomposition, BFGS
e Dong-Ho Lee : These CEA (just starting)
— Formalization of Quipper-like languages

Projects
e ANR SoftQPro, European project Quantex
e Partnership with CEA-Nano-Innov, Atos/Bull, LORIA (Nancy)

Postdocs
e \We have funding for at least 2 one-year postdocs!

66

Quantum @ LRI

We have funding for postdocs!

67

