# On proof-terms for (minimal) deduction modulo

### D. Cousineau - A. Miquel

**INRIA-MSR - ENS LYON** 

1er avril 2010

### $\circ~$ Which amount of information should we keep in proof-terms? $~~\rightarrow~$ Church-style vs. Curry-style

- $\circ~$  Which amount of information should we keep in proof-terms ?  $~~\rightarrow~$  Church-style vs. Curry-style
- $\circ~$  Church-style gives type inferring decidability
- $\circ~$  Curry-style simplifies strong normalization proofs

- $\circ~$  Which amount of information should we keep in proof-terms ?  $~~\rightarrow~$  Church-style vs. Curry-style
- $\circ~$  Church-style gives type inferring decidability
- $\circ~\mbox{Curry-style}$  simplifies strong normalization proofs
- $\circ~$  System F : equivalence between both systems

- $\circ~$  Which amount of information should we keep in proof-terms?  $\longrightarrow~$  Church-style vs. Curry-style
- Church-style gives type inferring decidability
- $\circ~\mbox{Curry-style}$  simplifies strong normalization proofs
- System F : equivalence between both systems
- $\circ~$  Pure Type Systems vs. Type Assignment Systems





### The 4 systems



Provability



Strong normalization



Conclusion





|                               | P <sub>0</sub>                                                                                                                            | Ρ1           | P <sub>2</sub>                   | P <sub>3</sub>                    |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------|-----------------------------------|
| Syntax                        | $\begin{array}{c} \alpha \\ \boldsymbol{\lambda \alpha: \mathbf{A}. \boldsymbol{\pi}} \\ \pi \pi' \\ \lambda x. \pi \\ \pi t \end{array}$ |              | α<br>λα.π<br>ππ'<br>Ι(π)<br>Ε(π) | $lpha \lambda lpha. \pi \pi \pi'$ |
| Formulas in proofs            | ✓                                                                                                                                         | ×            | ×                                | ×                                 |
| Terms in proofs               | ✓                                                                                                                                         | $\checkmark$ | ×                                | ×                                 |
| ∀-cuts                        | ✓                                                                                                                                         | $\checkmark$ | ✓                                | ×                                 |
| ⇒-cuts                        | <ul><li>✓</li></ul>                                                                                                                       | $\checkmark$ | <ul><li>✓</li></ul>              | $\checkmark$                      |
| Type-checking<br>decidability | ✓                                                                                                                                         | ×            | ×                                | ×                                 |

### From Church to Curry

| axiom                | $P_0,P_1,P_2,P_3$ | $\overline{\Gamma, \alpha : A \vdash \alpha : B}  A \equiv B$                                                                 |
|----------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------|
| ⇒ -elim              | $P_0,P_1,P_2,P_3$ | $\frac{\Gamma \vdash \pi : C \qquad \Gamma' \vdash \pi' : A}{\Gamma \Gamma' \vdash (\pi \pi') : B}  C \equiv A \Rightarrow B$ |
| $\Rightarrow$ -intro | P <sub>0</sub>    | $\frac{\Gamma, \alpha : A \vdash \pi : B}{\Gamma \vdash \lambda \alpha : A. \pi : C}  C \equiv A \Rightarrow B$               |
|                      | $P_1,P_2,P_3$     | $\frac{\Gamma, \alpha : A \vdash \pi : B}{\Gamma \vdash \lambda \alpha. \pi : C}  C \equiv A \Rightarrow B$                   |

Typing

| ∀-elim  | $P_0, P_1$                      | $\frac{\Gamma \vdash \pi : B}{\Gamma \vdash \pi \mathbf{t} : C}  B \equiv \forall x.A, \ C \equiv (t/x)A$                 |
|---------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|         | P <sub>2</sub>                  | $\frac{\Gamma \vdash \pi : B}{\Gamma \vdash \mathbf{E}(\pi) : C}  B \equiv \forall x.A, \ C \equiv (t/x)A$                |
|         | P <sub>3</sub>                  | $\frac{\Gamma \vdash \pi : B}{\Gamma \vdash \pi : C}  B \equiv \forall x.A, \ C \equiv (t/x)A$                            |
|         |                                 |                                                                                                                           |
| ∀-intro | $P_0, P_1$                      | $\frac{\Gamma \vdash \pi : A}{\Gamma \vdash \lambda \mathbf{x} . \pi : B}  B \equiv \forall x . A, \ x \notin FV(\Gamma)$ |
| ∀-intro | P <sub>0</sub> , P <sub>1</sub> | $B \equiv \forall x.A, \ x \notin FV(\Gamma)$                                                                             |





## The 4 systems



# Provability



Strong normalization



Conclusion



# **Erasing functions**

| $P_0\toP_1$                                                          | $P_1 \to P_2$                                       | $P_2 \to P_3$                                       |
|----------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| $ \alpha _0^1 = \alpha$                                              | $ \alpha _1^2 = \alpha$                             | $ \alpha _2^3 = \alpha$                             |
| $ \lambda \alpha : \mathbf{A}.\pi _0^1 = \lambda \alpha .  \pi _0^1$ | $ \lambda\alpha.\pi _1^2 = \lambda\alpha. \pi _1^2$ | $ \lambda\alpha.\pi _2^3 = \lambda\alpha. \pi _2^3$ |
| $ \pi\pi' _0^1 =  \pi _0^1 \  \pi' _0^1$                             | $ \pi\pi' _1^2 =  \pi _1^2 \;  \pi' _1^2$           | $ \pi\pi' _2^3 =  \pi _2^3 \  \pi' _2^3$            |
| $ \lambda x.\pi _0^1 = \lambda x. \pi _0^1$                          | $ \lambda x.\pi _1^2 = I( \pi _1^2)$                | $ I(\pi) _2^3 = \pi$                                |
| $ \pi t _0^1 =  \pi _0^1 t$                                          | $ \pi t _1^2 = E( \pi _1^2)$                        | $ E(\pi) _2^3 = \pi$                                |

# For all $0 \le i < j \le 3$ : $\circ$ If $\Gamma \vdash_i \pi : A$ , then $\Gamma \vdash_j |\pi|_i^j : A$ .

For all  $0 \le i < j \le 3$ :  $\circ$  If  $\Gamma \vdash_i \pi : A$ , then  $\Gamma \vdash_j |\pi|_i^j : A$ .  $\circ$  If  $\Gamma \vdash_j \pi' : A$ , then there exists  $\pi$  such that  $|\pi|_i^j = \pi'$  and  $\Gamma \vdash_i \pi : A$ .









Provability



Strong normalization



Conclusion

### $\beta$ -Reduction

| P <sub>0</sub>        | $(\lambda lpha : A.\pi) \pi' \rightarrow (\pi'/lpha) \pi$ | $(\lambda x.\pi)t \rightarrow (t/x)\pi$ |
|-----------------------|-----------------------------------------------------------|-----------------------------------------|
| <b>P</b> <sub>1</sub> | $(\lambdalpha.\pi)\pi' \ 	o \ (\pi'/lpha)\pi$             | $(\lambda x.\pi)t \ 	o \ (t/x)\pi$      |
| P <sub>2</sub>        | $(\lambdalpha.\pi)\pi' \ 	o \ (\pi'/lpha)\pi$             | $E(I(\pi)) \rightarrow \pi$             |
| P <sub>3</sub>        | $(\lambdalpha.\pi)\pi' \ 	o \ (\pi'/lpha)\pi$             |                                         |

 $\longrightarrow \beta$ -reduction does not model  $\forall$ -cuts in system **P**<sub>3</sub>

$$|SN_0|_0^1 = SN_1$$
  $|SN_1|_1^2 = SN_2$ 

A theory  $\mathcal{T}$  is strongly normalizing in system  $P_0$ iff it is strongly normalizing in system  $P_1$ iff it is strongly normalizing in system  $P_2$ 

(from equivalence of provability)



# $|SN_2|_2^3 \supseteq SN_3$

### $SN_2 \ni (E(\lambda \alpha.\alpha \alpha)) (\lambda \alpha.\alpha \alpha) \longrightarrow_{|.|_2^3} (\lambda \alpha.\alpha \alpha) (\lambda \alpha.\alpha \alpha) \notin SN_3$



$$|SN_2|_2^3 \supseteq SN_3$$

### $SN_2 \ni (E(\lambda \alpha.\alpha \alpha)) (\lambda \alpha.\alpha \alpha) \longrightarrow_{|.|_2^3} (\lambda \alpha.\alpha \alpha) (\lambda \alpha.\alpha \alpha) \notin SN_3$

#### What about theories?

(ill-typed couter-example)

# $\mathsf{P}_3 \; \mathsf{SN} \; \Rightarrow \; \mathsf{P}_2 \; \mathsf{SN}$

Given a theory,

if it is strongly normalizing in system  $P_3$ ,

let  $(\pi_i)_{i \in \mathbb{N}}$  a reductions sequence in **P**<sub>2</sub> with  $\Gamma \vdash_2 \pi_0 : A$ 

then  $(|\pi_i|_2^3)_{i \in \mathbb{N}}$  is finite.

Since  $\Rightarrow$ -reductions are translated to  $\Rightarrow$ -reductions,

 $(\pi_i)_{i \in \mathbf{N}}$  contains an infinite subesequence of  $\forall$ -reductions.

That's absurd.



# $\mathsf{P}_3 \; \mathsf{SN} \; \Rightarrow \; \mathsf{P}_2 \; \mathsf{SN}$

Given a theory, if it is strongly normalizing in system  $\mathbf{P}_3$ , let  $(\pi_i)_{i\in\mathbb{N}}$  a reductions sequence in  $\mathbf{P}_2$  with  $\Gamma \vdash_2 \pi_0 : A$ then  $(|\pi_i|_2^3)_{i\in\mathbb{N}}$  is finite. Since  $\Rightarrow$ -reductions are translated to  $\Rightarrow$ -reductions,  $(\pi_i)_{i\in\mathbb{N}}$  contains an infinite subesequence of  $\forall$ -reductions. That's absurd.

## $\textbf{P}_3 \text{ pre-model} \Rightarrow \text{theory SN}$ in all systems

# P<sub>3</sub> (complete) pre-model

• Church  $\frac{\Gamma \vdash \pi : B}{\Gamma \vdash \pi t : C} \quad B \equiv \forall x.A, \ C \equiv (t/x)A$ 

$$\llbracket \forall x.A \rrbracket_{\varphi} = \{\pi, \forall t, \pi t \in \llbracket A \rrbracket_{\varphi + \langle x, t \rangle} \} \triangleq \tilde{\forall} \{\llbracket A \rrbracket_{\varphi + \langle x, t \rangle}, t\}$$
  
with  $\tilde{\forall} \mathcal{E} \triangleq \{\pi \text{ such that } \forall t \forall E \in \mathcal{E}, \pi t \in E(t)\}$ 

## P<sub>3</sub> (complete) pre-model

• Church  $\frac{\Gamma \vdash \pi : B}{\Gamma \vdash \pi \ t : C} \quad B \equiv \forall x.A, \ C \equiv (t/x)A$ 

$$\llbracket \forall x.A \rrbracket_{\varphi} = \{\pi, \forall t, \pi t \in \llbracket A \rrbracket_{\varphi + \langle x, t \rangle} \} \triangleq \widetilde{\forall} \{\llbracket A \rrbracket_{\varphi + \langle x, t \rangle}, t\}$$
  
with  $\widetilde{\forall} \mathcal{E} \triangleq \{\pi \text{ such that } \forall t \forall E \in \mathcal{E}, \pi t \in E(t)\}$ 

 $\circ \quad \underbrace{\mathbf{Curry}}_{\Gamma \vdash \pi : C} \qquad \qquad \underbrace{\Gamma \vdash \pi : B}_{F \vdash \pi : C} \quad B \equiv \forall x.A, \ C \equiv (t/x)A$ 

$$\llbracket \forall x.A \rrbracket_{\varphi} = \{\pi, \forall t, \pi \in \llbracket A \rrbracket_{\varphi + \langle x, t \rangle} \} \triangleq \widetilde{\forall} \{\llbracket A \rrbracket_{\varphi + \langle x, t \rangle}, t\}$$
  
with  $\widetilde{\forall} \mathcal{E} \triangleq \bigcap \mathcal{E}$ 

### Curry computes more than Church

 $\rightarrow\,$  even for well-typed terms :

$$(I(\lambda \alpha. \alpha)) \beta \longrightarrow_{|.|^3_2} (\lambda \alpha. \alpha) \beta$$

with  $\beta : A \vdash_2 (I(\lambda \alpha . \alpha)) \beta : \forall x.A$  if  $\forall x.(A \Rightarrow A) \equiv A \Rightarrow \forall x.A$ 

### Curry computes more than Church

 $\rightarrow\,$  even for well-typed terms :

$$(I(\lambda \alpha. \alpha)) \beta \longrightarrow_{|.|_2^3} (\lambda \alpha. \alpha) \beta$$

with  $\beta : A \vdash_2 (I(\lambda \alpha. \alpha)) \beta : \forall x. A$  if  $\forall x. (A \Rightarrow A) \equiv A \Rightarrow \forall x. A$ 

$$\forall x. (A \Rightarrow B_x) \equiv A \Rightarrow \forall x. B_x$$

always true in Curry-style false à priori in Church-style

### An issue

- $\rightarrow \ \textit{restrain}$  Curry-style not to compute more than Church-style
- $\rightarrow~\text{non~confusing}$  theories

$$\forall x.A \notin B \Rightarrow C$$

 $\rightarrow\,$  avoid "stopping computation" well-typed terms in  $P_2$  :

$$I(\pi) = E(\pi) = (\lambda \alpha . \pi) t$$

### An issue

- $\rightarrow \ \textit{restrain}$  Curry-style not to compute more than Church-style
- $\rightarrow~$  non confusing theories

$$\forall x.A \notin B \Rightarrow C$$

 $\rightarrow\,$  avoid "stopping computation" well-typed terms in  $P_2$  :

$$I(\pi) \quad E(\pi) \quad (\lambda \alpha.\pi) t$$

### If a non-confusing theory is SN in $P_2$ then it is SN in $P_3$ .





### The 4 systems



Provability



Strong normalization



Conclusion



 Curry-style strong normalization always implies Church-style strong normalization (useful for building a pre-model for a theory)



 Curry-style strong normalization always implies Church-style strong normalization (useful for building a pre-model for a theory)

 $\circ~$  Computation is equivalent for non-confusing theories



 Curry-style strong normalization always implies Church-style strong normalization (useful for building a pre-model for a theory)

 $\circ~\mbox{Computation}$  is equivalent for non-confusing theories

 $\circ~$  Computation is not strong normalisation (i.e. SN can be equivalent even if computation is not) (  $\rightarrow~$  can we get rid of the non-confusion hypothesis?)