First-order logic in Dedukti

Gilles Dowek

As usual

Difficult (interesting) encodings made first (PTS, CIC, ...)

Easy ones (first-order logic, ...) never written down (like SN(λ_{\rightarrow})) Yet:

- verifying conservativity is important (Dedukti weak enough to avoid exotic terms, impredicativity ?)
- takes some time and energy to write down the clearest proofs (some surprises sometimes)

The context Δ

A language \mathcal{L}

 $\iota: Type$,

for each function symbol f (of arity n) of $\mathcal L$

$$\dot{f}: \underbrace{\iota \to \dots \to \iota}_{n} \to \iota,$$

for each predicate symbol f (of arity n) of $\mathcal L$

$$\dot{P}: \underbrace{\iota \to \dots \to \iota}_{n} \to Type$$

Can be extended to many-sorted logic

The translation

•
$$|x| = x$$

•
$$|f(t_1, ..., t_n)| = (\dot{f} |t_1| ... |t_n|)$$

•
$$|P(t_1, ..., t_n)| = (\dot{P} |t_1| ... |t_n|)$$

•
$$|A \Rightarrow B| = \Pi x : |A| |B|$$

•
$$|\forall x A| = \Pi x : \iota |A|$$

The term |t| has type ι , (resp. |A| has type Type) in $\Delta, x_1 : \iota, ..., x_n : \iota$

where $\{x_1, ..., x_n\} \supseteq FV(t)$ (resp. FV(A))

Correctness

If $\Gamma \vdash A$ provable then there exists a term π such that

$$\Delta, x_1 : \iota, \dots, x_n : \iota, |\Gamma| \vdash \pi : |A|$$

where
$$\{x_1, ..., x_n\} \supseteq FV(\Gamma \vdash A)$$

No rewrite rules ($\lambda \Pi$)

Simple induction on the structure of the proof

Conservativity

lf

$$\Delta, x_1: \iota, ..., x_n: \iota, |\Gamma| \vdash \pi: |A|$$

where $\{x_1, ..., x_n\} \supseteq FV(\Gamma \vdash A)$
then $\Gamma \vdash A$ provable

The order of the lemmas

Lemma 0: Confluence, termination, existence and uniqueness of normal forms

Lemma 1: A normal well-typed term has the form Type, $\Pi x : A B, \lambda x : A t \text{ or } (f t_1 \dots t_n)$

Lemma 1': A normal term of type T: Type has the form $\lambda x: A t$ or $(f t_1 \dots t_n)$

Lemma 1": A normal term of an atomic type T: Type has the form $(f t_1 \dots t_n)$

1, 1', 1" for all rewrite systems and contexts (atomic normal)

The order of the lemmas

Lemma 2: In $\Delta, x_1 : \iota, ..., x_n : \iota, |\Gamma|$ a normal term of type ι is the translation of a first-order term

Induction over term structure, from Lemma 1", with a analysis of the possible f's

Finally the Theorem

$$\Delta, x_1 : \iota, \dots, x_n : \iota, |\Gamma| \vdash \pi : |A|$$

Induction on π

• $\pi = \lambda x : T \pi'$, |A| has the form $\Pi x : T T'$ translation of a proposition

T a proposition or ι, T' a proposition B

$$\Delta, x_1 : \iota, \dots, x_n : \iota, |\Gamma|, x : T \vdash \pi' : |B|$$

(swapping context elements) + IH + intro rule

• $\pi = (f t_1 \dots t_n)$ $f \text{ in } |\Gamma|$

induction on k, the type of $(f t_1 \dots t_k)$ is a the translation of a proposition and this proposition is provable in Γ

- k = 0, axiom
- $((f t_1 \dots t_k) t_{k+1})$

The type of $(f t_1 \dots t_k)$ is a product and the translation of a proposition, 2 cases + Lemma 2 or IH + elim

II. Intuitionistic Logic in Dedukti (from Alexis Dorra's work)

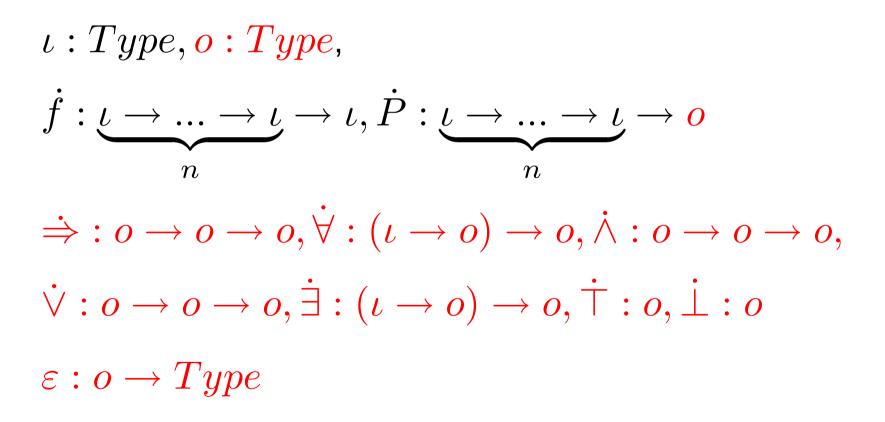
The problem and the solution

Include \land , \lor , \exists , \top , \bot

Use the "impredicative" encoding of the connectors in simple type theory

The context Δ

A language \mathcal{L}



The translation

Terms translated as usual

•
$$|P(t_1, ..., t_n)| = (\dot{P} |t_1| ... |t_n|)$$

•
$$|A \Rightarrow B| = (\Rightarrow |A| |B|), |A \land B| = (\land |A| |B|), \text{etc.}$$

•
$$|\forall x A| = (\dot{\forall} \lambda x : \iota |A|), |\exists x A| = (\dot{\exists} \lambda x : \iota |A|)$$

The term |t| has type ι , (resp. |A| has type o) in $\Delta, x_1 : \iota, ..., x_n : \iota$ where $\{x_1, ..., x_n\} \supseteq FV(t)$ (resp. FV(A)) $||A|| = (\varepsilon |A|)$ **Rewrite rules**

$$\begin{split} \varepsilon(\Rightarrow A B) &\longrightarrow \Pi_{-} : \varepsilon(A) \varepsilon(B) \\ \varepsilon(\dot{\forall} A) &\longrightarrow \Pi x : \iota \varepsilon(A x) \\ \varepsilon(\dot{\wedge} A B) &\longrightarrow \Pi P : o\left((\varepsilon(A) \Rightarrow \varepsilon(B) \Rightarrow \varepsilon(P)) \Rightarrow \varepsilon(P)\right) \end{split}$$

etc.

Two issues to worry about

Impredicativity?

Exotic terms in $\iota \rightarrow o$?

Correctness

If $\Gamma \vdash A$ provable then there exists a term π such that

$$\Delta, x_1: \iota, ..., x_n: \iota, \|\Gamma\| \vdash \pi: \|A\|$$
 where $\{x_1, ..., x_n\} \supseteq FV(\Gamma \vdash A)$

Simple induction on the structure of the proof

Conservativity

If $\Delta, x_1 : \iota, ..., x_n : \iota, \|\Gamma\| \vdash \pi : \|A\|$ where $\{x_1, ..., x_n\} \supseteq FV(\Gamma \vdash A)$ then $\Gamma \vdash A$ provable

The order of the lemmas

Lemma 0: Confluence, termination, existence and uniqueness of normal forms?

Lemma 1: A normal well-typed term has the form Type, $\Pi x : A B, \lambda x : A t \text{ or } (f t_1 \dots t_n)$

Lemma 1': A normal term of type T: Type has the form $\lambda x: A t$ or $(f t_1 \dots t_n)$

Lemma 1": A normal term of an atomic normal type T: Typehas the form $(f t_1 \dots t_n)$ Lemma 2: In $\Delta, x_1 : \iota, ..., x_n : \iota, |\Gamma|$ a normal term of type ι is the translation of a first-order term

Lemma 2': In $\Delta, x_1 : \iota, ..., x_n : \iota, |\Gamma|$ a normal term of type o is the translation of a first-order proposition

Induction over term structure, from Lemma 1", with a analysis of the possible f's

Finally the Theorem

$$\Delta, x_1: \iota, \dots, x_n: \iota, \|\Gamma\| \vdash \pi: \|A\|$$

Induction on π

But ...

A new problem

In minimal logic, recursion in the case $\pi = \lambda x : T \pi'$ introduced variable of type |A| (in the case of a \Rightarrow) or ι (in the case of a \forall) Handled by the induction hypothesis

$$\Delta, x_1 : \iota, ..., x_n : \iota, \|\Gamma\| \vdash \pi : \|A\|$$

Now if $\rho : (\varepsilon A)$ and $\rho' : (\varepsilon B)$
 $\lambda P : o \lambda \alpha : ((\varepsilon A) \Rightarrow (\varepsilon B) \Rightarrow (\varepsilon P)) (\alpha \rho \rho')$
has type $\Pi P : o (((\varepsilon A) \Rightarrow (\varepsilon B) \Rightarrow (\varepsilon P)) \Rightarrow (\varepsilon P))$
i.e $\varepsilon(\dot{\wedge} A B)$

A new problem

In minimal logic, recursion in the case $\pi = \lambda x : T \pi'$ introduced variable of type |A| (in the case of a \Rightarrow) or ι (in the case of a \forall) Handled by the induction hypothesis

 $\Delta, x_1 : \iota, ..., x_n : \iota, \|\Gamma\| \vdash \pi : \|A\|$ Now if $\rho : (\varepsilon A)$ and $\rho' : (\varepsilon B)$ $\lambda P : o \lambda \alpha : ((\varepsilon A) \Rightarrow (\varepsilon B) \Rightarrow (\varepsilon P)) (\alpha \rho \rho')$ has type $\Pi P : o (((\varepsilon A) \Rightarrow (\varepsilon B) \Rightarrow (\varepsilon P)) \Rightarrow (\varepsilon P))$ i.e $\varepsilon(\dot{\wedge} A B)$

An very elegant solution

$$\mathcal{L}_p = \mathcal{L} \cup \{P_1, ..., P_p\}$$

$$\Delta_{\mathbf{p}}, x_1 : \iota, \dots, x_n : \iota, \|\Gamma\| \vdash \pi : \|A\|$$

then

$$\Gamma \vdash_{\mathcal{L}_{p}} A$$

Proof: business as usual (induction on the structure of π + a new

Lemma: in first-order logic if $\Gamma \vdash_{\mathcal{L} \cup \{P\}} A$ and B is a proposition in \mathcal{L} then $(B/P)\Gamma \vdash_{\mathcal{L}} (B/P)A$

Two issues to worry about

Impredicativity?

Predicative polymorphism: $(\Pi P : o A) : Type$

Two issues to worry about

Exotic terms in $\iota \rightarrow o$?

Is there a function null : $\iota \to o$ that takes the value \top at 0 and \bot elsewhere?

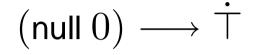
(What would be $(\forall \text{ null})$ the translation of?)

No

Unlike with inductive types, no closed term such as $(Rec \stackrel{.}{\top} \lambda x \lambda y \stackrel{.}{\perp})$

But ...

In $\lambda \Pi$ -modulo we can express a such function if we add the rules



$$(\mathsf{null}\ (S\ x)) \longrightarrow \dot{\bot}$$

and a symbol null

If we have a symbol null in $\lambda \Pi$ -modulo, we have it in the logic and $(\dot{\forall} \text{ null})$ is the translation of $\forall x \text{ (null}(x))$

The rules can be expressed by rules or axioms null(0) and $\forall x (\neg null(S(x)))$

III. Future work: Permissive Nominal Logic in Dedukti

Permissive Nominal Logic

An extension of first-order logic with binders: λ , $\{|\}$, \int

Two kind of variables: bound (x) and quantified (X)

Substitutions of quantified variables must capture bound variables sometimes e.g.

$$\forall T \forall U \left(\mathsf{app}((\lambda x \ T), U) = \mathsf{subst}(T, x, U) \right)$$

To each quantified variable is associated a permission set defining the capturable bound variables

Do we need this logic?

Everything can be done in HOL

Encode binders by λ 's (HOAS)

A translation from PNL to HOL

Soundness and completeness proved by semantic means

What about a translation to $\lambda \Pi$ (modulo) and a syntactic proof?

Make Dedukti a prover for PNL