First-order logic in Dedukti

Gilles Dowek

As usual

Difficult (interesting) encodings made first (PTS, CIC, ..))
Easy ones (first-order logic, ...) never written down (like SN(_,))

Yet:

e verifying conservativity is important (Dedukti weak enough to

avoid exotic terms, impredicativity ?)

e takes some time and energy to write down the clearest proofs

(some surprises sometimes)

The context A\

A language £
L T'ype,
for each function symbol f (of arity n) of £
N
n

for each predicate symbol f (of arity) of L

P: cee — s [
L — L ype

n

Can be extended to many-sorted logic

The translation
e | =1
o [f(tr,ostn)l = (f [ta] .. [tn])
o |P(t1,....tn)| = (P |t1] ... [tn])
e A= B|=1Ilz: |A||B|
o Vx Al =1lx:|A

The term |¢| has type ¢, (resp. | A| has type T'ype) in
AT Ly Ty, L

where {21, ...,z } 2 FV(t) (resp. F'V (A))

Correctness

If I' = A provable then there exists a term 7 such that

JANRE/ /S TRy S) I el S D |
where {x1, ...,z } 2 FV(I' F A)

No rewrite rules (ALI)

Simple induction on the structure of the proof

Conservativity

If
ANxy by, Xy L, [T | A

where {x1, ...,z } 2 FV(I' F A)

then I' = A provable

The order of the lemmas

Lemma 0O: Confluence, termination, existence and unigueness of

normal forms

Lemma 1: A normal well-typed term has the form 1'ype,

[lx: AB,Ax:Ator(fty...t,)

Lemma 1": A normal term of type 1" : I'ype has the form

Ax:Ator(fty...t,)

Lemma 1”: A normal term of an atomic type 1" : I'ype has the
form (f t1 ... t,)

1, 1’, 1” for all rewrite systems and contexts (atomic normal)

The order of the lemmas

Lemma2: In A, xq @ ¢, ..., 2, L, |I'] @normal term of type ¢ is

the translation of a first-order term

Induction over term structure, from Lemma 1", with a analysis of

the possible f’s

Finally the Theorem

JANRE/ /3 TR Ay S) I el S D |
Induction on 7T

e m =)\ :T 7', |A| has the form ITx : T'T’

translation of a proposition

T a proposition or ¢, 7" a proposition B
Axy ity Tyt |L,z: TEx:|B|

(swapping context elements) + IH + intro rule

o T = (ft1 tn)
fin|r)
induction on k, the type of (f t1 ... tx) is a the translation of
a proposition and this proposition is provable in I’
— k = 0, axiom

= ((f 1 i) trtn)
The type of (f 1 ... t) is a product and the translation of

a proposition, 2 cases + Lemma 2 or IH + elim

. Intuitionistic Logic in Dedukti (from Alexis Dorra’s work)

The problem and the solution

Include A, V, 3, T, L

Use the “impredicative” encoding of the connectors in simple type

theory

The context A\

A language £

L T'ype, o : 1T'ype,

fiv—...—21t—1,P:1t—..—1—o0
S— —

n n

=:0—0—0,V:(t—0) —0,A:0— 0— o0,
Vio—0—0,3:(t—0)—o0,T:0L:0

e:0— Type

The translation
Terms translated as usual
o [P(ty, ...ty = (P lt1] ... [tn])
o [A= B|=(=|A||B|),|AAB| = (A|A||B]), etc.
o [Vz Al = (V Az :¢|A]), |3z Al = (T Az : L |A])

The term || has type ¢, (resp. | A| has type 0) in

AT Ly Ty, L L
where {21, ...,z } 2 FV (1) (resp. F'V (A))
|A]l = (e [A])

Rewrite rules

e(=AB) —1Il.:e(A)e(B)
e(VA) — Iz : 1e(Ax)
e(NAB) —TIIP:0((e(A) = e(B) = &(P)) = ¢(P))

etc.

Two issues to worry about

Impredicativity?

Exotic termsin ¢t — 0?

Correctness

If I' = A provable then there exists a term 7 such that

A,xy by, Xy ||T)| || A

where {x1,....,x,} 2 FV(I' - A)

Simple induction on the structure of the proof

Conservativity

If
AN,xy by, Xy ||T)| || A

where {x1, ...,z } 2 FV(I' F A)

then I' = A provable

The order of the lemmas

Lemma O: Confluence, termination, existence and unigueness of

normal forms?

Lemma 1: A normal well-typed term has the form 1'ype,

[lx: AB,XAx:Ator(fty..t,)

Lemma 1': A normal term of type 1" : I'ype has the form

Ax:Ator (fty...tn)

Lemma 1”: A normal term of an atomic normal type 1" : I'ype
has the form (f t1 ... t,,)

The order of the lemmas

Lemma2: In A, xq @ ¢, ...,z L, |I'] @normal term of type ¢ is

the translation of a first-order term

Lemma2:In A, xq i ¢, ...,z L, |I'| @anormal term of type o is

the translation of a first-order proposition

Induction over term structure, from Lemma 1", with a analysis of

the possible f’s

Finally the Theorem

A,xy by xy s ||T|| F s ||A)

Induction on 7

But ...

A new problem

In minimal logic, recursion in the case m = A\x : 1" 7’ introduced

variable of type | A| (in the case of a =) or ¢ (in the case of a V)

Handled by the induction hypothesis
A,xy by, Xy ||T)| || A
Nowif p: (¢ A)and p' : (¢ B)
AP:o)la:((eA)= (eB)= (e P))(app)

hastype [IP : 0 (((c¢ A) = (¢ B) = (¢ P)) = (¢ P))
.ee(ANAB)

A new problem

In minimal logic, recursion in the case m = A\x : 1" 7’ introduced

variable of type | A| (in the case of a =) or ¢ (in the case of a V)

Handled by the induction hypothesis
A,xy by, Xy ||T)| || A
Nowif p: (¢ A)and p' : (¢ B)
AP :o)a:((eA)= (eB)= (e¢P)) (app)

hastype [IP : 0 (((c A) = (¢ B) = (¢ P)) = (¢ P))
.ee(ANAB)

An very elegant solution
L,=LU{P,.., P}
Ap,xy ity .yxpn||D|| || Al
then
Th A
Proof. business as usual (induction on the structure of ™ + a new

Lemma: in first-order logic if I’ I—/;U{p} A and B is a proposition
in L then (B/P)[' -, (B/P)A

Two issues to worry about

Impredicativity?

Predicative polymorphism: (IIP : 0 A) : T'ype

Two issues to worry about

Exotictermsin ¢t — 07?

Is there a function null ;: ¢ — o that takes the value T at (0 and _L

elsewhere?
(What would be (¥ null) the translation of?)
No

Unlike with inductive types, no closed term such as
(Rec T Azdy L)

But ...

In AII-modulo we can express a such function if we add the rules

(null 0) — T

(null (S z)) — L
and a symbol null
If we have a symbol null in ALI-modulo, we have it in the logic and
(V null) is the translation of Yz (null(z))

The rules can be expressed by rules or axioms null(0) and

Vo (—null(S(x)))

lll. Future work: Permissive Nominal Logic in Dedukti

Permissive Nominal Logic

An extension of first-order logic with binders: A, {|}, [
Two kind of variables: bound () and quantified (_X)

Substitutions of quantified variables must capture bound variables

sometimes e.qg.
VIVU (app((Ax T),U) = subst(T, x,U))

To each quantified variable is associated a permission set

defining the capturable bound variables

Do we need this logic?

Everything can be done in HOL

Encode binders by A’'s (HOAS)

A translation from PNL to HOL

Soundness and completeness proved by semantic means
What about a translation to AII (modulo) and a syntactic proof?

Make Dedukti a prover for PNL

