
First-order logic in Dedukti

Gilles Dowek

As usual

Difficult (interesting) encodings made first (PTS, CIC, ...)

Easy ones (first-order logic, ...) never written down (like SN(λ→))

Yet:

• verifying conservativity is important (Dedukti weak enough to

avoid exotic terms, impredicativity ?)

• takes some time and energy to write down the clearest proofs

(some surprises sometimes)

The context ∆

A language L

ι : Type,

for each function symbol f (of arity n) of L

ḟ : ι → ... → ι
︸ ︷︷ ︸

n

→ ι,

for each predicate symbol f (of arity n) of L

Ṗ : ι → ... → ι
︸ ︷︷ ︸

n

→ Type

Can be extended to many-sorted logic

The translation

• |x| = x

• |f(t1, ..., tn)| = (ḟ |t1| ... |tn|)

• |P (t1, ..., tn)| = (Ṗ |t1| ... |tn|)

• |A ⇒ B| = Πx : |A| |B|

• |∀x A| = Πx : ι |A|

The term |t| has type ι, (resp. |A| has type Type) in

∆, x1 : ι, ..., xn : ι

where {x1, ..., xn} ⊇ FV (t) (resp. FV (A))

Correctness

If Γ ⊢ A provable then there exists a term π such that

∆, x1 : ι, ..., xn : ι, |Γ| ⊢ π : |A|

where {x1, ..., xn} ⊇ FV (Γ ⊢ A)

No rewrite rules (λΠ)

Simple induction on the structure of the proof

Conservativity

If

∆, x1 : ι, ..., xn : ι, |Γ| ⊢ π : |A|

where {x1, ..., xn} ⊇ FV (Γ ⊢ A)

then Γ ⊢ A provable

The order of the lemmas

Lemma 0: Confluence, termination, existence and uniqueness of

normal forms

Lemma 1: A normal well-typed term has the form Type,

Πx : A B, λx : A t or (f t1 ... tn)

Lemma 1’: A normal term of type T : Type has the form

λx : A t or (f t1 ... tn)

Lemma 1”: A normal term of an atomic type T : Type has the

form (f t1 ... tn)

1, 1’, 1” for all rewrite systems and contexts (atomic normal)

The order of the lemmas

Lemma 2: In ∆, x1 : ι, ..., xn : ι, |Γ| a normal term of type ι is

the translation of a first-order term

Induction over term structure, from Lemma 1”, with a analysis of

the possible f ’s

Finally the Theorem

∆, x1 : ι, ..., xn : ι, |Γ| ⊢ π : |A|

Induction on π

• π = λx : T π′, |A| has the form Πx : T T ′

translation of a proposition

T a proposition or ι, T ′ a proposition B

∆, x1 : ι, ..., xn : ι, |Γ|, x : T ⊢ π′ : |B|

(swapping context elements) + IH + intro rule

• π = (f t1 ... tn)

f in |Γ|

induction on k, the type of (f t1 ... tk) is a the translation of

a proposition and this proposition is provable in Γ

– k = 0, axiom

– ((f t1 ... tk) tk+1)

The type of (f t1 ... tk) is a product and the translation of

a proposition, 2 cases + Lemma 2 or IH + elim

II. Intuitionistic Logic in Dedukti (from Alexis Dorra’s work)

The problem and the solution

Include ∧, ∨, ∃, ⊤, ⊥

Use the “impredicative” encoding of the connectors in simple type

theory

The context ∆

A language L

ι : Type, o : Type,

ḟ : ι → ... → ι
︸ ︷︷ ︸

n

→ ι, Ṗ : ι → ... → ι
︸ ︷︷ ︸

n

→ o

⇒̇ : o → o → o, ∀̇ : (ι → o) → o, ∧̇ : o → o → o,

∨̇ : o → o → o, ∃̇ : (ι → o) → o, ⊤̇ : o, ⊥̇ : o

ε : o → Type

The translation

Terms translated as usual

• |P (t1, ..., tn)| = (Ṗ |t1| ... |tn|)

• |A ⇒ B| = (⇒̇ |A| |B|), |A ∧ B| = (∧̇ |A| |B|), etc.

• |∀x A| = (∀̇ λx : ι |A|), |∃x A| = (∃̇ λx : ι |A|)

The term |t| has type ι, (resp. |A| has type o) in

∆, x1 : ι, ..., xn : ι

where {x1, ..., xn} ⊇ FV (t) (resp. FV (A))

‖A‖ = (ε |A|)

Rewrite rules

ε(⇒̇ A B) −→ Π : ε(A) ε(B)

ε(∀̇ A) −→ Πx : ι ε(A x)

ε(∧̇ A B) −→ ΠP : o ((ε(A) ⇒ ε(B) ⇒ ε(P)) ⇒ ε(P))

etc.

Two issues to worry about

Impredicativity?

Exotic terms in ι → o?

Correctness

If Γ ⊢ A provable then there exists a term π such that

∆, x1 : ι, ..., xn : ι, ‖Γ‖ ⊢ π : ‖A‖

where {x1, ..., xn} ⊇ FV (Γ ⊢ A)

Simple induction on the structure of the proof

Conservativity

If

∆, x1 : ι, ..., xn : ι, ‖Γ‖ ⊢ π : ‖A‖

where {x1, ..., xn} ⊇ FV (Γ ⊢ A)

then Γ ⊢ A provable

The order of the lemmas

Lemma 0: Confluence, termination, existence and uniqueness of

normal forms?

Lemma 1: A normal well-typed term has the form Type,

Πx : A B, λx : A t or (f t1 ... tn)

Lemma 1’: A normal term of type T : Type has the form

λx : A t or (f t1 ... tn)

Lemma 1”: A normal term of an atomic normal type T : Type

has the form (f t1 ... tn)

The order of the lemmas

Lemma 2: In ∆, x1 : ι, ..., xn : ι, |Γ| a normal term of type ι is

the translation of a first-order term

Lemma 2’: In ∆, x1 : ι, ..., xn : ι, |Γ| a normal term of type o is

the translation of a first-order proposition

Induction over term structure, from Lemma 1”, with a analysis of

the possible f ’s

Finally the Theorem

∆, x1 : ι, ..., xn : ι, ‖Γ‖ ⊢ π : ‖A‖

Induction on π

But ...

A new problem

In minimal logic, recursion in the case π = λx : T π′ introduced

variable of type |A| (in the case of a ⇒) or ι (in the case of a ∀)

Handled by the induction hypothesis

∆, x1 : ι, ..., xn : ι, ‖Γ‖ ⊢ π : ‖A‖

Now if ρ : (ε A) and ρ′ : (ε B)

λP : o λα : ((ε A) ⇒ (ε B) ⇒ (ε P)) (α ρ ρ′)

has type ΠP : o (((ε A) ⇒ (ε B) ⇒ (ε P)) ⇒ (ε P))

i.e ε(∧̇ A B)

A new problem

In minimal logic, recursion in the case π = λx : T π′ introduced

variable of type |A| (in the case of a ⇒) or ι (in the case of a ∀)

Handled by the induction hypothesis

∆, x1 : ι, ..., xn : ι, ‖Γ‖ ⊢ π : ‖A‖

Now if ρ : (ε A) and ρ′ : (ε B)

λP : o λα : ((ε A) ⇒ (ε B) ⇒ (ε P)) (α ρ ρ′)

has type ΠP : o (((ε A) ⇒ (ε B) ⇒ (ε P)) ⇒ (ε P))

i.e ε(∧̇ A B)

An very elegant solution

Lp = L ∪ {P1, ..., Pp}

∆p, x1 : ι, ..., xn : ι, ‖Γ‖ ⊢ π : ‖A‖

then

Γ ⊢Lp
A

Proof: business as usual (induction on the structure of π + a new

Lemma: in first-order logic if Γ ⊢L∪{P} A and B is a proposition

in L then (B/P)Γ ⊢L (B/P)A

Two issues to worry about

Impredicativity?

Predicative polymorphism: (ΠP : o A) : Type

Two issues to worry about

Exotic terms in ι → o?

Is there a function null : ι → o that takes the value ⊤̇ at 0 and ⊥̇

elsewhere?

(What would be (∀̇ null) the translation of?)

No

Unlike with inductive types, no closed term such as

(Rec ⊤̇ λxλy ⊥̇)

But ...

In λΠ-modulo we can express a such function if we add the rules

(null 0) −→ ⊤̇

(null (S x)) −→ ⊥̇

and a symbol null

If we have a symbol null in λΠ-modulo, we have it in the logic and

(∀̇ null) is the translation of ∀x (null(x))

The rules can be expressed by rules or axioms null(0) and

∀x (¬null(S(x)))

III. Future work: Permissive Nominal Logic in Dedukti

Permissive Nominal Logic

An extension of first-order logic with binders: λ, {|},
∫

Two kind of variables: bound (x) and quantified (X)

Substitutions of quantified variables must capture bound variables

sometimes e.g.

∀T∀U (app((λx T), U) = subst(T, x, U))

To each quantified variable is associated a permission set

defining the capturable bound variables

Do we need this logic?

Everything can be done in HOL

Encode binders by λ’s (HOAS)

A translation from PNL to HOL

Soundness and completeness proved by semantic means

What about a translation to λΠ (modulo) and a syntactic proof?

Make Dedukti a prover for PNL

