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Abstract

We study a discrete-time approximation for solutions of forward-backward stochas-

tic differential equations (FBSDEs) with a jump. Assuming that the generators are

Lipschitz or with a quadratic growth w.r.t. the variable z, and that the terminal

conditions are bounded, we prove the convergence of the scheme when the number of

time steps n goes to infinity. We present a method based on the companion paper

[14] which allows to link the FBSDE with a jump with a system of recursive Brownian

FBSDEs, then, we use the classical result on the Brownian FBSDEs to approximate

the system of recursive FBSDEs. That allows to get a convergence rate similar to the

convergence rate for the schemes of Brownian FBSDEs.

Keywords: discrete-time approximation, forward-backward stochastic differential equa-

tion with a jump, Lipschitz generator, generator of quadratic growth, progressive enlarge-

ment of filtrations, decomposition in the reference filtration.
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1 Introduction

In this paper, we study a discrete-time approximation scheme for the solution of a system

of forward-backward stochastic differential equations (FBSDEs) with a jump of the form
Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs +

∫ t

0

β(s,Xs−)dHs ,

Yt = g(XT ) +

∫ T

t

f(s,Xs, Ys, Zs, Us)ds−
∫ T

t

ZsdWs −
∫ T

t

UsdHs ,

where Ht = 1τ≤t and τ is a jump time, which can represent a default time in credit risk or

counterparty risk. Such equations naturally appear in finance, see for example Bielecki and

Jeanblanc [2], Lim and Quenez [18], Ankirchner et al. [1] for an application to exponential

utility maximization and Kharroubi and Lim [14] for the hedging problem in a complete

market. We study the cases where the generator f is Lipschitz and f has a quadratic

growth w.r.t. z.

To the best of our knowledge, there is none work which studies the discrete-time approx-

imation scheme of these FBSDEs. For the FBSDEs with jumps, there is only the paper of

Bouchard and Elie [4], but in this paper the jump is a Poisson measure independent of the

Brownian motion. Notice that the problem of discretization of the FBSDEs without jump

with a Lipschitz generator is well understood, see e.g. Chevance [5], Bouchard and Touzi

[3], Zhang [23], Gobet et al. [8], Delarue and Menozzi [6]. For the case with a generator of

quadratic growth w.r.t. z there are very few works on. As far as we know, the only works

where the time approximation is studied are the papers of Imkeller et al. [9] and Richou

[22].

In this paper, we can not use the same technics as [4] because they use the Malliavin

calculus to get some regularity results and in our framework, to the best of our knowledge,

there is none work about the Malliavin calculus. To get a discrete-time approximation

scheme we use the results of [14], that allows to decompose the FBSDE with a jump in

a recursive system of Brownian FBSDEs. Then, we give a discrete-time approximation

scheme for the solutions of each Brownian FBSDE, for that we use the classical results if

the generator is Lipschitz and the results of Richou if the generator has a quadratic growth

w.r.t. z. Finally, we obtain a discrete-time approximation scheme by combining the schemes

for the Brownian FBSDEs.

The paper is organized as follows. The next section presents the FBSDE, the different

assumptions on the coefficients and the functions appearing in the FBSDE and we recall the

result of [14]. In Section 3, we give a discrete-time approximation scheme for the FBSDEs

with a Lipschitz generator and we obtain a global error estimate. In Section 4, we give a

discrete-time approximation scheme for the FBSDEs with a generator of quadratic growth

w.r.t. z and we obtain a global error estimate.
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2 Preliminaries

2.1 Notation

Throughout this paper, we let (Ω,G,P) a probability space on which is defined a standard

one dimensional Brownian motion W . We denote F = (Ft)t≥0 the natural filtration of W ,

augmented by all the P-null sets. We also consider on this space a random time τ , i.e. a

nonnegative G-measurable random variable, and we denote classically the associated jump

process by H which is given by

Ht = 1τ≤t , t ≥ 0 .

We denote by D = (Dt)t≥0 the smallest right-continuous filtration for which τ is a stopping

time. The global information is then defined by the progressive enlargement G = (Gt)t≥0
of the initial filtration where G := F ∨ D. This kind of enlargement was studied by Jacod,

Jeulin and Yor in the 80s (see e.g. [11], [12] and [10]). We introduce some notations used

throughout the paper:

– P(F) (resp. P(G)) is the σ-algebra of F (resp. G)-predictable measurable subsets

of Ω × R+, i.e. the σ-algebra generated by the left-continuous F (resp. G)-adapted

processes,

– PM(F) (resp. PM(G)) is the σ-algebra of F (resp. G)-progressively measurable

subsets of Ω× R+.

We shall make, throughout the sequel, the standing assumption in the progressive enlarge-

ment of filtrations known as density assumption (see e.g. [13, ?, 14]).

(DH) There exists a positive and bounded P(F)⊗ B(R+)-measurable process γ such that

P
[
τ ∈ dθ

∣∣ Ft] = γt(θ)dθ , t ≥ 0 .

Using Proposition 2.1 in [14] we get that (DH) ensures that the process H admits an

intensity.

Proposition 2.1. The process H admits a compensator of the form λtdt, where the process

λ is defined by

λt =
γt(t)

P
[
τ > t

∣∣ Ft]1t≤τ , t ≥ 0 .

We impose the following assumption to the process λ:

(HBI) The process λ is bounded.

We also introduce the martingale invariance assumption known as the (H)-hypothesis.

(H) Any F-martingale remains a G-martingale.

We now introduce the following spaces, where a, b ∈ R+ with a ≤ b, and T < ∞ is the

terminal time:
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– S∞G [a, b] (resp. S∞F [a, b]) is the set of PM(G) (resp. PM(F))-measurable processes

(Yt)t∈[a,b] essentially bounded:

‖Y ‖S∞[a,b] := ess sup
t∈[a,b]

|Yt| < ∞ .

– SpG[a, b] (resp. SpF[a, b]), with p ≥ 2, is the set of PM(G) (resp. PM(F))-measurable

processes (Yt)t∈[a,b] such that

‖Y ‖Sp[a,b] :=
(
E
[

sup
t∈[a,b]

|Yt|p
]) 1

p
< ∞ .

– Hp
G[a, b] (resp. Hp

F[a, b]), with p ≥ 2, is the set of P(G) (resp. P(F))-measurable

processes (Zt)t∈[a,b] such that

‖Z‖Hp[a,b] := E
[( ∫ b

a

|Zt|2dt
) p

2
] 1
p
< ∞ .

– L2(λ) is the set of P(G)-measurable processes (Ut)t∈[0,T ] such that

‖U‖L2(µ) :=
(
E
[ ∫ T

0

|Us|2λsds
]) 1

2
< ∞ .

2.2 Forward-Backward SDE with a jump

Given measurable functions b : [0, T ]×R→ R, σ : [0, T ]→ R, β : [0, T ]×R→ R, g : R→ R
and f : [0, T ]×R×R×R×R→ R, and an initial condition x ∈ R, we study the discrete-time

approximation of the solution (X, Y, Z, U) in S2
G[0, T ]× S∞G [0, T ]×H2

G[0, T ]× L2(λ) to the

following forward-backward stochastic differential equation:

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s)dWs +

∫ t

0

β(s,Xs−)dHs , 0 ≤ t ≤ T , (2.1)

Yt = g(XT ) +

∫ T

t

f
(
s,Xs, Ys, Zs, Us(1−Hs)

)
ds

−
∫ T

t

ZsdWs −
∫ T

t

UsdHs , 0 ≤ t ≤ T , (2.2)

when the generator of BSDE (2.2) has a quadratic growth w.r.t. z.

Remark 2.1. In BSDE (2.2), the jump component U of the unknown (Y, Z, U) appears in

the generator f with an additional multiplicative term 1 − H. This ensures the equation

to be well posed in S∞G [0, T ] × H2
G[0, T ] × L2(λ). Indeed, the component U lives in L2(λ),

thus its value on (τ ∧ T, T ] is not defined, since the intensity λ vanishes on (τ ∧ T, T ]. We

therefore introduce the term 1 −H to kill the value of U on (τ ∧ T, T ] and hence to avoid

making the equation depends on it.
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We first prove that the decoupled system (2.1)-(2.2) admits a solution. To this end, we

introduce several assumptions on the coefficients b, σ, β, g and f . We consider the following

assumptions for the forward coefficients:

(HF) There exist two constants Ka and La such that the functions b, σ and β satisfy

|b(t, 0)|+ |σ(t)|+ |β(t, 0)| ≤ Ka ,

and

|b(t, x)− b(t, x′)|+ |β(t, x)− β(t, x′)| ≤ La|x− x′| ,

for all (t, x, x′) ∈ [0, T ]× R× R.

For the backward coefficients g and f , we consider the following assumptions:

(HBQ) There exist two constants Mg and Kq such that the functions g and f satisfy

|g(x)| ≤ Mg ,

and

|f(t, x, y, z, u)| ≤ Kq

(
1 + |y|+ |z|2 + |u|

)
,

for all (t, x, y, z, u) ∈ [0, T ] × R × R × R × R, and the function f(t, x, y, ., u) is convexe or

concave uniformly in (t, x, y, u) ∈ [0, T ]× R× R× R.

Following the decomposition approach of [14], we introduce the recursive system of FBSDEs

associated with (2.1)-(2.2):

• Find (X1(θ), Y 1(θ), Z1(θ)) ∈ S2
F[0, T ]× S∞F [θ, T ]×H2

F[θ, T ] such that

X1
t (θ) = x+

∫ t

0

b
(
s,X1

s (θ)
)
ds+

∫ t

0

σ(s)dWs + β
(
θ,X1

θ−(θ)
)
1θ≤t , 0 ≤ t ≤ T , (2.3)

Y 1
t

(
θ
)

= g
(
X1
T (θ)

)
+

∫ T

t

f
(
s,X1

s (θ), Y 1
s (θ), Z1

s (θ), 0
)
ds−

∫ T

t

Z1
s (θ)dWs , θ ≤ t ≤ T , (2.4)

for all θ ∈ [0, T ].

• Find (X0, Y 0, Z0) ∈ S2
F[0, T ]× S∞F [0, T ]×H2

F[0, T ] such that

X0
t = x+

∫ t

0

b
(
s,X0

s

)
ds+

∫ t

0

σ(s)dWs , 0 ≤ t ≤ T , (2.5)

Y 0
t = g

(
X0
T

)
+

∫ T

t

f
(
s,X0

s , Y
0
s , Z

0
s , Y

1
s (s)− Y 0

s

)
ds−

∫ T

t

Z0
sdWs , 0 ≤ t ≤ T . (2.6)

Then, the link between FBSDE (2.1)-(2.2) and the recursive system of FBSDEs (2.5)-(2.6)

and (2.3)-(2.4) is given by the following result.
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Theorem 2.1. Assume that (HF) and (HBQ) hold true. Then, FBSDE (2.1)-(2.2) admits

a unique solution (X, Y, Z, U) ∈ S2
G[0, T ]× S∞G [0, T ]×H2

G[0, T ]× L2(λ) given by
Xt = X0

t 1t<τ +X1
t (τ)1τ≤t ,

Yt = Y 0
t 1t<τ + Y 1

t (τ)1τ≤t ,

Zt = Z0
t 1t≤τ + Z1

t (τ)1τ<t ,

Ut =
(
Y 1
t (t)− Y 0

t

)
1t≤τ ,

(2.7)

where (X1(θ), Y 1(θ), Z1(θ)) is the unique solution to FBSDE (2.3)-(2.4) in S2
F[0, T ]×S∞F [θ, T ]×

H2
F[θ, T ], for θ ∈ [0, T ], and (X0, Y 0, Z0) is the unique solution to FBSDE (2.5)-(2.6) in

S2
F[0, T ]× S∞F [0, T ]×H2

F[0, T ].

Proof. The existence and uniqueness of the forward process X and its link with X0 and

X1 have already been proved in the first part of this work [15]. We now concentrate on the

backward equation.

To follow the decomposition approach initiated by the authors in [14], we need the generator

to be predictable. To this end, we notice that in BSDE (2.2), we can replace the generator

(t, y, z, u) 7→ f(t,Xt, y, z, u(1−Ht)) by the predictable map (t, y, z, u) 7→ f(t,Xt− , y, z, u(1−
Ht−)).

Suppose that (HBQ) holds true. The existence of a solution (Y, Z, U) ∈ S2
G[0, T ]×H2

G[0, T ]×
L2(λ) is then a direct consequence of Proposition 3.1 in [14]. We then notice that from the

definition of H we have f(t, x, y, z, u(1 − Ht)) = f(t, x, y, z, 0) for all t ∈ (τ ∧ T, T ]. This

property and (HBQ) allow to apply Theorem 4.2 in [14], which gives the uniqueness of a

solution to BSDE (2.2). 2

Throughout the sequel, we give an approximation of the solution to FBSDE (2.1)-(2.2)

by studying the approximation of the solutions to the recursive system of FBSDEs (2.3)-

(2.4) and (2.5)-(2.6). For that we use the recent results of [22] about the discretization of

BSDEs in the case where the driver is quadratic.

3 Discrete-time scheme for the FBSDE

In this section, we introduce a discrete-time approximation of the solution (X, Y, Z, U) to

FBSDE (2.1)-(2.2) based on its decomposition given by Theorem 2.1. For that we set

ε ∈ (0, T ) and N ∈ N. We use a non equidistant grid π with 2n + 1 discretization times.

The n+ 1 first discretization times are defined on [0, T − ε] by

tk := T
(

1−
( ε
T

)k/n)
, 0 ≤ k ≤ n ,

and we use an equidistant net on [T − ε, T ] for the last n discretization times

tk := T −
(2n− k

n

)
ε , n < k ≤ 2n .
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For t ∈ [0, T ], we denote by π(t) (resp. π+(t)) the largest (resp. smallest) element of π

smaller (resp. larger) than t:

π(t) := max
{
ti , i = 0, . . . , 2n | ti ≤ t

}
(resp. π+(t) := min

{
ti , i = 0, . . . , 2n | ti ≥ t

}
) .

We also denote by |π| the mesh of π:

|π| := max
{
ti+1 − ti , i = 0, . . . , 2n− 1

}
,

and by ∆W π
i (resp. ∆tπi ) the increment of W (resp. the difference) between ti and ti−1:

∆W π
i := Wti −Wti−1

(resp. ∆tπi := ti − ti−1), for 1 ≤ i ≤ 2n.

3.1 Discrete-time scheme for X

We introduce an approximation of X based on the discretization of the processes X0 and

X1.

• Euler scheme for X0. We consider the classical scheme X0,π defined by{
X0,π
t0 = x ,

X0,π
ti = X0,π

ti−1
+ b(ti−1, X

0,π
ti−1

)∆tπi + σ(ti−1)∆W
π
i , 1 ≤ i ≤ 2n .

(3.8)

• Euler scheme for X1. Since the process X1 depends on two parameters t and θ, we

introduce a discretization of X1 in these two variables. We then consider the following

scheme
X1,π
t0 (π(θ)) = x+ β(t0, x)1π(θ)=0 , 0 ≤ k ≤ 2n ,

X1,π
ti (π(θ)) = X1,π

ti−1
(π(θ)) + b(ti−1, X

1,π
ti−1

(π(θ)))∆tπi + σ(ti−1)∆W
π
i

+ β(ti−1, X
1,π
ti−1

(π(θ)))1ti=π(θ) , 1 ≤ i ≤ 2n , 0 ≤ θ ≤ T .

(3.9)

We are now able to provide an approximation of the process X solution to FSDE (2.1). We

consider the scheme Xπ defined by

Xπ
t = X0,π

π(t)1t<τ +X1,π
π(t)(π(τ))1t≥τ , 0 ≤ t ≤ T . (3.10)

We shall denote by {F0,π
i }0≤i≤2n (resp. {F1,π

i (θ)}0≤i≤2n) the discrete-time filtration associ-

ated with X0,π (resp. X1,π)

F0,π
i := σ(X0,π

tj , j ≤ i)

(resp. F1,π
i (θ) := σ(X1,π

tj (θ), j ≤ i)) .
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3.2 Discrete-time scheme for (Y, Z, U)

We introduce an approximation of (Y, Z) based on the discretization of (Y 0, Z0) and (Y 1, Z1).

To this end we introduce the backward implicit schemes on π associated with BSDEs (2.4)

and (2.6). Since the system is recursively coupled, we first introduce the scheme associated

with (2.4). We then use it to define the scheme associated with (2.6). Before to give the

schemes we define ρs : R→ R the projection ball

B
(

0,Mz,1 +
Mz,2

(T − s) 1
2

)
where Mz,1 and Mz,2 are some constants defined throughout the sequel. We also introduce

gN a Lipschitz approximation of g with Lipschitz constant N .

• Backward scheme for (Y 1, Z1). We consider the implicit scheme (Y 1,π, Z1,π) defined by
Y 1,π
T (π(θ)) = gN(X1,π

T (π(θ))) ,

Z1,π
ti (π(θ)) = ρti+1

( 1

∆tπi+1

E1,π(θ)
i

[
Y 1,π
ti+1

(π(θ))∆W π
i+1

])
, ti ≥ π(θ) ,

Y 1,π
ti (π(θ)) = E1,π(θ)

i

[
Y 1,π
ti+1

(π(θ))
]

+ f ε(ti, X
1,π
ti (π(θ)), Y 1,π

ti+1
(π(θ)), Z1,π

ti (π(θ)))∆tπi+1 ,
(3.11)

where E1,π(θ)
i = E[ . |F1,π

i (θ)] for 0 ≤ i ≤ 2n and θ ∈ [0, T ], and

f ε(s, x, y, z) = 1s≤T−εf(s, x, y, z, 0) + 1s>T−εf(s, x, y, 0, 0) .

• Backward scheme for (Y 0, Z0). Since the generator of (2.6) involves the process (Y 1
t (t))t∈[0,T ],

we consider a discretization based on Y 1,π. We therefore consider the scheme (Y 0,π, Z0,π)

defined by 
Y 0,π
T = gN(X0,π

T ) ,

Z0,π
ti = ρti+1

( 1

∆tπi+1

E0
i

[
Y 0,π
ti+1

∆W π
i+1

])
, 0 ≤ i ≤ 2n− 1 ,

Y 0,π
ti = E0

i

[
Y 0,π
ti+1

]
+ fπ,ε(ti, X

0,π
ti , Y

0,π
ti , Z0,π

ti )∆tπi+1 ,

(3.12)

where E0
i = E[ . |F0,π

i ] for 0 ≤ i ≤ n, and fπ,ε is defined by

fπ,ε(t, x, y, z) = 1t≤T−εf
(
t, x, y, z, Y 1,π

π(t)(π(t))− y
)

+ 1t>T−εf
(
t, x, y, 0, Y 1,π

π(t)(π(t))− y
)
,

for all (t, x, y, z) ∈ [0, T ]× R× R× R.

We then consider the following scheme for the solution (Y, Z, U) to BSDE (2.2)
Y π
t = Y 0,π

π(t)1t<τ + Y 1,π
π(t)(π(τ))1t≥τ ,

Zπ
t = Z0,π

π(t)1t≤τ + Z1,π
π(t)(π(τ))1t>τ ,

Uπ
t =

(
Y 1,π
π(t)(π(t))− Y 0,π

π(t)

)
1t≤τ ,

(3.13)

for t ∈ [0, T ].
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4 Convergence of the scheme for the FSDE

We introduce the following assumption, which will be used to discretize X.

(HFD) There exist three constants Kb, Kt and Kβ such that the functions b, σ and β satisfy∣∣b(t, x)
∣∣ ≤ Kb(1 + |x|) ,∣∣b(t, x)− b(t′, x)

∣∣+
∣∣σ(t)− σ(t′)

∣∣ ≤ Kt

(
|t− t′|

1
2 ∧ |t− t′|

)
,∣∣β(t, x)− β(t′, x)

∣∣ ≤ Kβ|t− t′| ,

for all (t, t′, x) ∈ [0, T ]× [0, T ]× R.

We now recall the error estimate for the scheme of X obtained in the first part of this

work [15].

Theorem 4.1. Under (HF) and (HFD), we have the following estimate

E
[

sup
t∈[0,T ]

∣∣Xt −Xπ
t

∣∣2] ≤ K|π| ,

for a constant K which does not depend on π.

5 Convergence of the scheme for the BSDE

To provide error estimates for the scheme of the BSDE, we need an additional regularity

property for the coefficients g and f . We then introduce the following assumption.

(HBQD) There exists a constant K such that the function f satisfies

|f(t, x, y, z, u)− f(t, x′, y′, z′, u′)| ≤ Kf

[
|x− x′|+ |y − y′|+ |u− u′|

]
+Lf,z(1 + |z|+ |z′|)|z − z′| ,

for all (x, x′, y, y′, z, z′, u, u′) ∈ R2 × R2 × R2 × R2.

5.1 A uniform bound for Z0 and Z1

We present here a uniform bound for the processes Z0 and Z1. To this end, we need the

following assumption.

(Hβ) The function β is differentiable w.r.t. x and there exists a constant K∇ > 0 such that

1 +∇β(t, x) ≥ K∇ , (t, x) ∈ [0, T ]× R .

Proposition 5.1. Suppose that (HF), (HFD), (HBQ), (HBQD) and (Hβ) hold and

that g is Lipschitz with Lipschitz constant Kg. Then, there exists a version of Z1(θ) such

that

|Z1
t (θ)| ≤ e(2La+Kf )T (Kg + TKf )Mσ , θ ≤ t ≤ T .
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Proof. In this proof, we omit the variable θ to improve readability. In the case where b, f

and g are differentiable w.r.t. x, y and z, (X1, Y 1, Z1) is also differentiable w.r.t. x and we

can see that

∇θX1
t = 1 +

∫ t

θ

∇b(s,X1
s )∇θX1

sds , θ ≤ t ≤ T , (5.1)

and

∇θY 1
t = ∇θg(X1

T )∇θX1
T −

∫ T

t

∇θZ1
sdWs

+

∫ T

t

∇θf(s,X1
s , Y

1
s , Z

1
s , 0)

(
∇θX1

s ,∇θY 1
s ,∇θZ1

s

)
ds , (5.2)

for t ∈ [θ, T ]. Since ∇b is uniformly bounded, we get from (5.1) and Gronwall’s lemma

|∇θX1
t | ≤ eLaT , θ ≤ t ≤ T . (5.3)

Using (Hβ), (5.3), we get

|(∇θX1
t )−1| ≤ eLaT , θ ≤ t ≤ T . (5.4)

Applying Itô’s formula, we get

e
∫ t
θ ∇

θ
yf(s,X

1
s ,Y

1
s ,Z

1
s ,0)ds∇θY 1

t = e
∫ T
θ ∇

θ
yf(s,X

1
s ,Y

1
s ,Z

1
s ,0)ds∇θg(X1

T )∇θX1
T

+

∫ T

t

e
∫ s
θ ∇

θ
yf(r,X

1
r ,Y

1
r ,Z

1
r ,0)dr∇θ

xf(s,X1
s , Y

1
s , Z

1
s , 0)∇θX1

sds

−
∫ T

t

e
∫ s
θ ∇

θ
yf(r,X

1
r ,Y

1
r ,Z

1
r ,0)dr∇θZ1

sdW̃
1
s , (5.5)

where dW̃ 1
s = dWs −∇θ

zf(s,X1
s , Y

1
s , Z

1
s , 0)ds. From (HBQD), we have∥∥∥∫ .

θ

∇θ
zf(s,X1

s , Y
1
s , Z

1
s , 0)dWs

∥∥∥2
BMO

≤ K
(

1 + sup
ϑ∈[θ,T ]

E
[ ∫ T

ϑ

|Z1
s |2ds

∣∣∣Fϑ])
≤ K

(
1 +

∥∥∥∫ .

θ

Z1
sdWs

∥∥∥2
BMO

)
< ∞ ,

where the last inequality comes from the fact that under (HF), (HFD), (HBQ) and

(HBQD)
∫ .
θ
Z1
sdWs belongs to the space BMO (see METTRE REF). Therefore, we can

apply Girsanov’s theorem: there exists a probability measure Q1 under which W̃ 1 is a

Brownian motion. We then get from (5.5)

e
∫ t
θ ∇yf(s,X

1
s ,Y

1
s ,Z

1
s ,0)ds∇θY 1

t = EQ1

[
e
∫ T
θ ∇

θ
yf(s,X

1
s ,Y

1
s ,Z

1
s ,0)ds∇θg(X1

T )∇θX1
T

+

∫ T

t

e
∫ s
θ ∇

θ
yf(r,X

1
r ,Y

1
r ,Z

1
r ,0)dr∇θ

xf(s,X1
s , Y

1
s , Z

1
s , 0)∇θX1

sds
∣∣∣Ft] .

11



This last inequality, (HBQD) and (5.3) give

|∇θY 1
t | ≤ e(La+Kf )T (Kg + TKf ) , θ ≤ t ≤ T . (5.6)

Moreover, using Malliavin calculus, we have the classical representation of the process Z1

given by ∇θY 1(∇θX1)−1σ(.). We therefore obtain from (5.4) and (5.6)

|Z1
t | ≤ e(2La+Kf )T (Kg + TKf )Mσ a.s.

When b, f and g are not differentiable, we can also prove the result by a standard approxi-

mation and stability results for BSDEs with linear growth. 2

Some useful estimates of Z0

Proposition 5.2. Suppose that (HFQD) and (HBQD) hold and that g is Lipschitz with

Lipschitz constant Kg. Then, there exists a version of Z0 such that

|Z0
t | ≤ e2(Kf+La)T (Kg +KfT )

(
1 + TKfe

KfT (1 + Lae
LaT )

)
Mσ , 0 ≤ t ≤ T .

Proof. To simplify the notations we write h(t, x, y, z) instead of f(t, x, y, z, Y 1
t (t) − y).

Firstly, we suppose that b, g and f are differentiable w.r.t. x, y, z and u. Then, (X0, Y 0, Z0)

is differentiable w.r.t. x and (∇X0,∇Y 0,∇Z0) is solution of

∇X0
t = 1 +

∫ t

0

∇b(s,X0
s )ds∇X0

sds , (5.7)

and

∇Y 0
t = ∇g(X0

T )∇X0
T +

∫ T

t

(
∇xh(s,X0

s , Y
0
s , Z

0
s )∇X0

s +∇yh(s,X0
s , Y

0
s , Z

0
s )∇Y 0

s

+∇zh(s,X0
s , Y

0
s , Z

0
s )∇Z0

s +∇uh(s,X0
s , Y

0
s , Z

0
s )(∇Y 1

s (s)−∇Y 0
s )
)
ds

−
∫ T

t

∇Z0
sdWs . (5.8)

Thanks to usual transformations on the BSDEs we obtain

∇Y 0
t = e

∫ T
t (∇y−∇u)h(s,X0

s ,Y
0
s ,Z

0
s )ds∇g(X0

T )∇X0
T

+

∫ T

t

e
∫ s
t (∇y−∇u)h(r,X

0
r ,Y

0
r ,Z

0
r )dr∇xh(s,X0

s , Y
0
s , Z

0
s )∇X0

sds

+

∫ T

t

e
∫ s
t (∇y−∇u)h(r,X

0
r ,Y

0
r ,Z

0
r )dr∇uh(s,X0

s , Y
0
s , Z

0
s )(∇Y 1

s (s)−∇Y 0
s )ds

−
∫ T

t

e
∫ s
t (∇y−∇u)h(r,X

0
r ,Y

0
r ,Z

0
r )dr∇Z0

sdW̃
0
s

where dW̃ 0
s = dWs −∇zh(s,X0

s , Y
0
s , Z

0
s )ds.

12



Since Z0 ∗W belongs to the space of BMO martingales, there exists a probability Q0

under which W̃ 0 is a Brownian motion. Then,

∇Y 0
t = EQ0

[
e
∫ T
0 (∇y−∇u)h(s,X0

s ,Y
0
s ,Z

0
s )ds∇g(X0

T )∇X0
T

+

∫ T

t

e
∫ s
0 (∇y−∇u)h(r,X

0
r ,Y

0
r ,Z

0
r )dr∇xh(s,X0

s , Y
0
s , Z

0
s )∇X0

sds

+

∫ T

t

e
∫ s
0 (∇y−∇u)h(r,X

0
r ,Y

0
r ,Z

0
r )dr∇uh(s,X0

s , Y
0
s , Z

0
s )∇Y 1

s (s)ds
∣∣∣Ft] .

Since ∇b is uniformly bounded, we get from (5.7) and Gronwall’s lemma

|∇X0
t | ≤ eLaT , 0 ≤ t ≤ T , (5.9)

we also prove that |∇Y 1
t (t)| ≤ (1+Lae

LaT )e(La+Kf )T (Kg+TKf ). Using these two inequalities

we get

|∇Y 0
t | ≤ e(2Kf+La)T (Kg +KfT )

(
1 + TKfe

KfT (1 + Lae
LaT )

)
.

Moreover, thanks to the Malliavin calculus, it is classical to show that a version of Z0 is

given by ∇Y 0(∇X0)−1σ(.). So we obtain

|Z0
t | ≤ e2(Kf+La)T (Kg +KfT )

(
1 + TKfe

KfT (1 + Lae
LaT )

)
Mσ a.s.

because |(∇X0
t )−1| ≤ eLaT .

When b, g and f are not differentiable, we can also prove the result by a standard

approximation and stability results for BSDEs with linear growth. 2

5.2 A time dependent bound Z0 and Z1

We also get a second bound for Z1(θ) which depends on the time t but for that we introduce

two alternative assumptions.

Assumption 5.1. b is differentiable w.r.t. x, and σ and β are differentiable w.r.t. t. There

exists λ ∈ R+ such that

|σ(t)|
∣∣σ(t)∇b(t, x)− σ′(t)

∣∣ ≤ λ|σ(t)|2 .

Assumption 5.2. σ is invertible and ∀ t ∈ [0, T ], |σ(t)−1| ≤Mσ−1 .

Proposition 5.3. Suppose that (HFQD) and (HBQD) hold and that Assumptions 5.1 or

5.2 hold. Moreover, suppose that g is lower (or upper) semi-continuous. Then, there exists

a version of Z1(θ) and there exists a constant Kz1 ∈ R+ that depends only on T , Mg, Kq,

Kf and Lf,z such that

|Z1
t (θ)| ≤ Kz1

(
1 + (T − t)−1/2

)
, θ ≤ t ≤ T .

13



Proof. In a first time, we will suppose that Assumption 5.1 holds and that f and g are

differentiable w.r.t. x, y and z. Then, we have

Ft = FT −
∫ T

t

e
∫ s
θ ∇

θ
yf(u,X

1
u,Y

1
u ,Z

1
u,0)du∇θZ1

sdW̃s ,

where

Ft := e
∫ t
θ ∇

θ
yf(u,X

1
u,Y

1
u ,Z

1
u,0)du∇θY 1

t +

∫ t

θ

e
∫ s
θ ∇

θ
yf(u,X

1
u,Y

1
u ,Z

1
u,0)du∇θ

xf(u,X1
u, Y

1
u , Z

1
u, 0)∇θX1

sds .

Now we define

αt :=

∫ t

θ

e
∫ s
θ ∇

θ
yf(u,X

1
u,Y

1
u ,Z

1
u,0)du∇θ

xf(u,X1
u, Y

1
u , Z

1
u, 0)∇θX1

sds(∇θX1
s )−1σ(t) ,

Z̃t := Ft(∇θX1
s )−1σ(t) = e

∫ t
θ ∇

θ
yf(u,X

1
u,Y

1
u ,Z

1
u,0)duZt + αt ,

F̃t := eλtFt(∇θX1
s )−1 .

Since d∇θX1
t = ∇θb(t,X1

t )∇θX1
t dt, then d(∇θX1

t )−1 = −(∇θX1
t )−1∇θb(t,X1

t )dt and thanks

to Itô’s formula

dZ̃t = dFt(∇θX1
t )−1σ(t)− Ft(∇θX1

t )−1∇θb(t,X1
t )σ(t)dt+ Ft(∇θX1

t )−1σ(t) ,

and

d(eλtZ̃t) = Z̃t[λ−∇θb(t,X1
t )]σ(t)dt+ F̃tσ

′(t)dt+ eλtdFt(∇θX1
t )−1σ(t) .

Finally,

d|eλtZ̃t|2 = d〈Mt〉+ 2
[
λ|F̃tσ(t)|2 − F̃ 2

t σ(t)[σ(t)∇θb(t,X1
t )− σ′(t)]

]
dt+ dM∗

t

with Mt :=
∫ t
0
eλsdFs(∇θX1

s )−1σ(s) and M∗ is a Q1-martingale. Thanks to Assumption 5.1

we are able to conclude that |eλtZ̃t|2 is a Q1-submartingale. Hence

EQ1

[ ∫ T

t

e2λs|Z̃s|2ds
∣∣∣Ft] ≥ e2λt|Z̃t|2(T − t)

≥ e2λt
∣∣∣e∫ tθ ∇θyf(s,X1

s ,Y
1
s ,Z

1
s ,0)dsZt + αt

∣∣∣2(T − t)
which implies

|Z1
t |2(T − t) = e−2λte−2

∫ t
θ ∇

θ
yf(s,X

1
s ,Y

1
s ,Z

1
s ,0)dseλt

∣∣∣e∫ tθ ∇θyf(s,X1
s ,Y

1
s ,Z

1
s ,0)dsZ1

t + αt − αt
∣∣∣2(T − t)

≤ K
(
e2λt
∣∣∣e∫ tθ ∇θyf(s,X1

s ,Y
1
s ,Z

1
s ,0)dsZ1

t + αt

∣∣∣2 + 1
)

(T − t)

≤ K
(
EQ1

[ ∫ T

t

e2λs|Z̃s|2ds
∣∣∣Ft]+ (T − t)

)
14



with K a constant that only depends on T , Kf , La, Ka and λ and not on θ. Moreover, we

have

EQ1

[ ∫
tT
e2λs|Z̃s|2ds

∣∣∣Ft] ≤ KEQ1

[ ∫ T

t

(
|Z1

s |2 + |αs|2
)
ds
∣∣∣Ft]

≤ K
(
||Z1||2BMO(Q1) + (T − t)

)
But ||Z1||BMO(Q1) does not depend on Kg because (Y 1, Z1) is a solution of the following

BSDE:

Y 1
t = g(X1

T ) +

∫ T

t

(
f(s,X1

s , Y
1
s , Z

1
s , 0)− Z1

s∇θ
zf(s,X1

s , Y
1
s , Z

1
s , 0)

)
ds−

∫ T

t

Z1
sdW̃s .

Finally |Z1
t | ≤ K(1 + (T − t)−1/2) a.s.

When σ is invertible, the inequality of Assumption 5.1 is verified with λ := Mσ−1(KaLa+

Kt). Since λ does not depend on ∇b and σ′, we can prove the result when b(t, .) and σ are

not differentiable by a standard approximation and stability results for BSDEs with linear

groath. So, we are allowed to replace Assumption 5.1 by Assumption 5.2. 2

We get another bound for Z0 which depends on the time t.

Proposition 5.4. Suppose that (HFQD), (HBQD) hold and that Assumptions 5.1 or 5.2

hold. Moreover, suppose that g is lower (or upper) semi-continuous. Then, there exists a

version of Z0 and there exists a constant Kz0 > 0 that depends only on T , Mg, Kq, Kf and

Lf,z such that,

|Z0
t | ≤ Kz0

(
1 + (T − t)−1/2

)
, 0 ≤ t ≤ T .

Proof. In a first time, we will suppose that Assumption 5.1 holds and that f , g are

differentiable w.r.t. x, y, z and u. Then, (Y 0, Z0) is differentiable w.r.t. x and (∇Y 0,∇Z0)

is the solution of BSDE (5.8). We denote

Ft := e
∫ t
0 (∇y−∇u)h(s,X

0
s ,Y

0
s ,Z

0
s )ds∇Y 0

t +

∫ t

0

e
∫ s
0 (∇y−∇u)h(r,X

0
r ,Y

0
r ,Z

0
r )dr

(∇xh(s,X0
s , Y

0
s , Z

0
s )∇X0

s +∇uh(s,X0
s , Y

0
s , Z

0
s )∇Y 1

s (s))ds .

We can write

Ft = FT −
∫ T

t

e
∫ s
0 (∇y−∇u)h(r,X

0
r ,Y

0
r ,Z

0
r )dr∇Z0

sdW̃s .

Now, we define

αt :=

∫ t

0

e
∫ r
0 (∇y−∇u)h(s,X0

s ,Y
0
s ,Z

0
s )ds
(
∇xh(r,X0

r , Y
0
r , Z

0
r )∇X0

r +∇uh(r,X0
r , Y

0
r , Z

0
r )∇Y 1

r (r)
)
dr(∇X0

t )−1σ(t) ,

Z̃t := Ft(∇X0
t )−1σ(t) = e

∫ t
0 (∇y−∇u)h(s,X

0
s ,Y

0
s ,Z

0
s )dsZ0

t + αt , a.s. ,

F̃t := eλtFt(∇X0
t )−1 .
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Thanks to Itô’s formula

dZ̃t = (∇X0
t )−1σ(t)dFt − Ft(∇X0

t )−1∇b(t,X0
t )σ(t)dt+ Ft(∇X0

t )−1σ′(t)dt ,

and

d(eλtZ̃t) = F̃t(λ−∇b(t,X0
t ))σ(t)dt+ F̃tσ

′(t)dt+ eλt(∇X0
t )−1σ(t)dFt .

Finally,

d
∣∣eλtZ̃t∣∣2 = d〈M〉t + 2

[
λ
∣∣F̃tσ(t)

∣∣2 − F̃ 2
t σt[σ(t)∇b(t,X0

t )− σ′(t)]
]
dt+M∗

t ,

with Mt :=
∫ t
0
eλsdFs(∇X0

s )−1σ(s) and M∗ a Q0-martingale. Thanks to Assumption 5.1, we

are able to conclude that |eλtZ̃t|2 is a Q0-martingale. Therefore, we obtain as in [22] that

|Z0
t | ≤ K(1 + (T − t)−1/2) a.s.

When f is not differentiable and g is only Lipschitz, we can prove the result by a standard

approximation and stability results for BSDEs. 2

5.3 Approximation of FBSDE (2.3)-(2.4)

An approximation of the quadratic BSDE

Throughout the sequel, we approximate BSDE (2.3)-(2.4) by another one. Let (Y N,ε(θ), ZN,ε(θ))

be the solution of the BSDE

Y N,ε
t (θ) = gN(X1

T (θ)) +

∫ T

t

f ε
(
s,X1

s (θ), Y N,ε
s (θ), ZN,ε

s (θ)
)
ds

−
∫ T

t

ZN,ε
s (θ)dWs , θ ≤ t ≤ T , (5.10)

we recall that

f ε(s, x, y, z) = 1s≤T−εf(s, x, y, z, 0) + 1s>T−εf(s, x, y, 0, 0) ,

and gN a Lipschitz approximation of g with Lipschitz constant N . f ε verifies (HBQD) with

the same constants. Moreover, we can apply Proposition 5.3 to obtain an upper bound for

ZN,ε(θ).

Proposition 5.5. Let us assume that (HFQD), (HBQD) and Assumptions 5.1 or 5.2

hold. There exists a version of ZN,ε(θ) and there exists a constant Mz1 ∈ R+ that does not

depend on N and ε such that,

|ZN,ε
t (θ)| ≤ Mz1

[(
1 + (T − t)−1/2

)
∧ (N + 1)

]
, θ ≤ t ≤ T .

Thanks to BMO tools, we have a stability result for quadratic BSDEs: Mettre une ref
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Proposition 5.6. Let us assume that (HFQD) and (HBQD) hold. There exists a con-

stant K that does not depend on N , ε and θ such that

E
[

sup
t∈[θ,T ]

∣∣Y N,ε
t (θ)− Y 1

t (θ)
∣∣2]+ E

[ ∫ T

θ

∣∣ZN,ε
t (θ)− Z1

t (θ)
∣∣2dt] ≤ K(e1(θ,N) + e2(θ,N, ε)) ,

with

e1(θ,N) := E
[∣∣gN(X1

T (θ))− g(X1
T (θ))

∣∣2q]1/q ,
e2(θ,N, ε) := E

[( ∫ T

T−ε∨θ

∣∣∣f(t,X1
t (θ), Y N,ε

t (θ), ZN,ε
t (θ), 0

)
− f

(
t,X1

t (θ), Y N,ε
t (θ), 0, 0

)∣∣∣dt)2q]1/q ,
and q defined in Theorem ??. Quel Th

The aim of our work is to study the error of discretization

e(θ,N, ε, π) := sup
θ≤t≤T

E
[∣∣Y 1,π

π(t)(π(θ))− Y 1
t (θ)

∣∣2]+ E
[ ∫ T

θ

∣∣Z1,π
π(t)(π(θ))− Zt(θ)

∣∣2dt] ,
where (Y 1,π, Z1,π) is defined by (3.11).

It is easy to see that there exists a constant K such that

e(θ,N, ε, π) ≤ K
(
e1(θ,N) + e2(θ,N, ε) + e3(θ,N, ε, π) + e4(θ,N, ε, π)

)
,

with e1(θ,N) and e2(θ,N, ε) defined in Proposition 5.6 and

e3(θ,N, ε, π) := sup
t∈[θ,T ]

E
[∣∣Y N,ε

t (π(θ))− Y N,ε
t (θ)

∣∣2]+ E
[ ∫ T

θ

∣∣ZN,ε
t (π(θ))− ZN,ε

t (θ)
∣∣2dt] ,

e4(θ,N, ε, π) := sup
t∈[θ,T ]

E
[∣∣Y N,ε

t (π(θ))− Y 1,π
π(t)(π(θ))

∣∣2]+ E
[ ∫ T

θ

∣∣ZN,ε
t (π(θ))− Z1,π

π(t)(π(θ))
∣∣2dt] .

Study of the time approximation error e4(θ,N, ε, π)

We set ε = Tn−a and N = nb, with a, b ∈ R∗+ two parameters. Firstly, we give a

convergence result for the Euler scheme.

Proposition 5.7. Assume (HFQD) holds. Then, there exists a constant K that does not

depend on n and θ, such that

sup
t∈[θ,T ]

E
[∣∣X1

t (θ)−X1,π
π(t)(π(θ))

∣∣2] ≤ K
lnn

n
.

Proof. As in the proof of Theorem 4.1, we have that

sup
t∈[θ,T ]

E
[∣∣X1

t (θ)−X1,π
π(t)(π(θ))

∣∣2] ≤ K sup
1≤i≤2n

∆tπi = K∆tπ0 .

But ∆tπ0 = T (1− n−a/n) ≤ C ln(n)
n

, so the proof is ended. 2

For the sequel, we need an extra assumption.
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Assumption 5.3. There exists a positive constant Kf,t such that ∀ t, t′ ∈ [0, T ], ∀ x ∈
R, ∀ y ∈ R, ∀ z ∈ R, ∀ u ∈ R∣∣f(t, x, y, z, u)− f(t′, x, y, z, u)

∣∣ ≤ Kf,t|t− t′|1/2 .

By adapting the proof of [22], we get the BSDE approximation.

Proposition 5.8. Assume that (HFQD), (HBQD), Assumptions 5.3 and 5.1 or 5.2 hold.

Then, for all η > 0, there exists a constant K that does not depend on N , ε, n and θ, such

that

sup
t∈[θ,T ]

E
[∣∣Y 1,π

π(t)(π(θ))− Y N,ε
t (π(θ))

∣∣2]+ E
[ ∫ T

θ

∣∣Z1,π
π(t)(π(θ))− ZN,ε

t (π(θ))
∣∣2dt]

≤ K

n1−2b−Ka +
K

n1+η−4b ,

with K = 4(1 + η)L2
f,zM

2
z1.

Proof. It is sufficient to give an upper bound of

sup
t∈[θ,T ]

E
[∣∣Y N,ε

t (π(θ))− Y N,ε
π(t)(π(θ))

∣∣2] ,
because the upper bound of

sup
t∈[θ,T ]

E
[∣∣Y 1,π

π(t)(π(θ))− Y N,ε
π(t)(π(θ))

∣∣2]+ E
[ ∫ T

θ

∣∣Z1,π
π(t)(π(θ))− ZN,ε

t (π(θ))
∣∣2dt]

is given by [22]. Using BSDE (5.10), we get

Y N,ε
t (π(θ))− Y N,ε

π(t)(π(θ)) =

∫ t

π(t)

f ε
(
s,X1

s (π(θ)), Y N,ε
s (π(θ)), ZN,ε

s (π(θ))
)
ds−

∫ t

π(t)

ZN,ε
s (π(θ))dWs .

Since f ε satisfies (HBQD) and using Proposition 5.1, we can see that there exists a constant

K such that

sup
t∈[θ,T ]

E
[∣∣Y N,ε

t (π(θ))− Y N,ε
π(t)(π(θ))

∣∣2] ≤ K(1 + n4b) sup
1≤i≤2n

∆tπi .

2

Study of the global error e(θ,N, ε, π)

Let us study errors e1(θ,N), e2(θ,N, ε) and e3(θ,N, ε, π).

Proposition 5.9. Let us assume that (HFQD) and (HBQD) hold. There exists a con-

stant K > 0 such that

e2(θ,N, ε) ≤
K

n2a−4b .
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Proposition 5.10. We assume that (HFQD) holds and g is α-Hölder. Then, there exists

a constant K > 0 such that

e1(θ,N) ≤ K

n
2bα
1−α

.

The proofs of these propositions are given in [22].

We now give an upper bound for the error e3(θ,N, ε, π).

Proposition 5.11. Let us assume that (HFQD) and (HBQD) hold. Then, for all η > 0,

there exists a constant K > 0 such that

e3(θ,N, ε, π) ≤ K

n1−K′a+η ,

with K ′ = 4L2
fM

2
z .

Proof. We denote ηt := Y N,ε
t (θ)−Y N,ε

t (π(θ)) and µt := |Y N,ε
t (θ)−Y N,ε

t (π(θ))|2. Using Itô’s

formula and with (HFQD) and (HBQD), we get

E[µt] ≤ E[µT ]− E
[ ∫ T

t

∣∣ZN,ε
s (θ)− ZN,ε

s (π(θ))
∣∣2ds]+ (1 +Kf )E

[ ∫ T

t

µsds
]

+K2
fE
[ ∫ T

t

∣∣X1
s (θ)−X1

s (π(θ))
∣∣2ds]

+2E
[ ∫ T−ε

t

|ηs|
(
Kf + 2Lf,zMz1(1 + (T − s)−1/2)

)∣∣ZN,ε
s (θ)− ZN,ε

s (π(θ))
∣∣ds] ,

we can see that

E[µt] ≤ K2
gE
[∣∣X1

T (θ)−X1
T (π(θ))

∣∣2]+K2
fE
[ ∫ T

t

∣∣X1
s (θ)−X1

s (π(θ))
∣∣2ds]

+E
[ ∫ T

t

(
1 +Kf + 2K2

f +
4L2

f,zM
2
z1

T − s
1s≤T−ε

)
µsds

]
.

Using Proposition 5.7 and Gronwall’s Lemma, we get

E
[∣∣Y N,ε

t (θ)− Y N,ε
t (π(θ))

∣∣2] ≤ K
lnn

n1−4L2
f,zM

2
z1
a
.

We also get

E
[ ∫ T

t

∣∣ZN,ε
s (θ)−ZN,ε

s (π(θ))
∣∣2ds] ≤ E[µT ]+KE

[ ∫ T

t

µsds
]
+KE

[ ∫ T

t

∣∣X1
s (θ)−X1

s (π(θ))
∣∣2ds]

+ 2E
[ ∫ T−ε

t

|ηs|
(
Kf + 2Lf,zMz1(1 + (T − s)−1/2)

)∣∣ZN,ε
s (θ)− ZN,ε

s (π(θ))
∣∣ds] .

Using the inequality 2ab ≤ a2/β + βb2, there is exists a constant K such that

E
[ ∫ T

t

∣∣ZN,ε
s (θ)− ZN,ε

s (π(θ))
∣∣2ds] ≤ K

{
E[µT ] + E

[ ∫ T

t

µsds
]

+ E
[ ∫ T

t

∣∣X1
s (θ)−X1

s (π(θ))
∣∣2ds]

+E
[ ∫ T−ε

t

(
Kf + 2Lf,zMz1(1 + (T − s)−1/2)

)2
µsds

]}
.
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With the previous inequality, we get

E
[ ∫ T

t

∣∣ZN,ε
s (θ)− ZN,ε

s (π(θ))
∣∣2ds] ≤ K

(lnn)2

n1−4L2
f,zM

2
z1
a
.

2

Now we are able to gather all these errors.

Proposition 5.12. We assume that (HFQD), (HBQD), Assumptions 5.3, and 5.1 or

5.2 hold. We assume also that g is α-Hölder. Then, for all η > 0, there exists a constant

K > 0 that does not depend on n and θ such that

e(θ,N, ε, π) ≤ K
( 1

n
2α

(2−α)(2+K′′)−2−2α

+
1

n1−K′a+η

)
,

with K ′ = 4L2
f,zM

2
z1 and K ′′ = 4(1 + η)L2

f,zM
2
z1.

Proof. Thanks to Propositions 5.8, 5.9, 5.10 and 5.11, we have

e(N, ε, π) ≤ K

n
2bα
1−α

+
K

n2a−4b +
K

n1−K′a+η +
K

n1−2b−K′′a .

Then, we only need to set a := 1+2b
2+K′′

and b := 1−α
(2−α)(2+K′′)−2+2α

to obtain the result. 2

5.4 Discretization of FBSDE (2.5)-(2.6)

Convergence of modified time discretization schemes for the BSDE

We now give an approximation scheme for the solution of FBSDE (2.5)-(2.6). We first

approximate our quadratic BSDE by another one. We set ε ∈]0, T [ and N ∈ N. Let

(Y N,ε, ZN,ε) the solution of the BSDE

Y N,ε
t = gN(X0

T ) +

∫ T

t

f ε(s,X0
s , Y

N,ε
s , ZN,ε

s )ds−
∫ T

t

ZN,ε
s dWs , (5.11)

with

f ε(s, x, y, z) := 1s≤T−εf(s, x, y, z, Y 1
s (s)− y) + 1s>T−εf(s, x, y, 0, Y 1

s (s)− y) ,

and gN a Lipschitz approximation of g with Lipschitz constant N . f ε verifies (HBQD)

with the same constants as f . Since gN is a Lipschitz function, ZN,ε has a bounded version

and BSDE (5.11) is a Lipschitz BSDE. Moreover, we can apply Proposition 5.4 to obtain an

upper bound of ZN,ε.

Proposition 5.13. Let us assume that (HFQD), (HBQD) and Assumptions 5.1 or 5.2

hold. There exists a version of ZN,ε and there exists a constant Mz0 > 0 that does not depend

on N and ε such that,

|ZN,ε
t | ≤ Mz0

[(
1 + (T − t)−1/2

)
∧ (N + 1)

]
, 0 ≤ t ≤ T .
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Proposition 5.14. Let us assume that (HFQD) and (HBQD) hold. There exists a

constant K that does not depend on N and ε such that

E
[

sup
0≤t≤T

∣∣Y N,ε
t − Y 0

t

∣∣2]+ E
[ ∫ T

0

∣∣ZN,ε
t − Z0

t

∣∣2dt] ≤ K(e1(N) + e2(N, ε))

with

e1(N) := E
[
|gN(X0

T )− g(X0
T )|2q

]1/q
,

e2(N, ε) := E
[( ∫ T

T−ε

∣∣f(t,X0
t , Y

N,ε
t , ZN,ε

t , Y 1
t (t)− Y N,ε

t

)
− f

(
t,X0

t , Y
N,ε
t , 0, Y 1

t (t)− Y N,ε
t

)∣∣dt)2q]1/q ,
and q defined in Theorem ??. Quel Thm?

We now introduce another BSDE which approximate the Lipschitz BSDE (5.11) by

replacing Y 1
s (s) by Y 1,π

π(s)(π(s)):

Ỹ N,ε,π
t = gN(X0

T ) +

∫ T

t

fπ,ε
(
s,X0

s , Ỹ
N,ε,π
s , Z̃N,ε,π

s

)
ds−

∫ T

t

Z̃N,ε,π
s dWs , (5.12)

with fπ,ε(s, x, y, z) = f ε(s, x, y, z, Y 1,π
π(s)(π(s))− y).

Proposition 5.15. Let us assume that (HFQD) and (HBQD) hold. There exists a

constant K that does not depend on N and ε such that

E
[

sup
0≤t≤T

∣∣Y N,ε
t − Ỹ N,ε,π

t

∣∣2]+ E
[ ∫ T

0

∣∣ZN,ε
t − Z̃N,ε,π

t

∣∣2dt] ≤ Ke3(N, ε, π) .

The aim of our work is to study the error of discretization

e(N, ε, π) := sup
0≤t≤T

E
[∣∣Y 0,π

π(t) − Y
0
t

∣∣2]+ E
[ ∫ T

0

∣∣Z0,π
π(t) − Z

0
t

∣∣2dt] .
It is easy to see that

e(N, ε, π) ≤ K
(
e1(N) + e2(N, ε) + e3(N, ε, π) + e4(N, ε, π)

)
,

with e1(N) and e2(N, ε) defined in Proposition 5.14 and e3(N, ε, π) defined in Proposition

5.15, and

e4(N, ε, π) := sup
0≤t≤T

E
[∣∣Ỹ N,ε,π

t − Y 0,π
π(t)

∣∣2]+ E
[ ∫ T

0

∣∣Z̃N,ε,π
t − Z0,π

π(t)

∣∣2dt] .
Study of the time approximation error e4(N, ε, π)

As in [22], we add an extra assumption
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Assumption 5.4. There exists a positive constant Kt such that ∀ t, t′ ∈ [0, T ], ∀ x ∈ R,

∀ y ∈ R, ∀ z ∈ R, ∣∣fπ,ε(t, x, y, z)− fπ,ε(t′, x, y, z)
∣∣ ≤ Kt,f |t− t′|1/2 .

We set ε = Tn−a and N = nb, with a, b ∈ R∗+ two parameters.

Firstly, we give a convergence result for the Euler scheme.

Proposition 5.16. Assume (HFQD) holds. Then, there exists a constant K that does not

depend on n such that

sup
0≤t≤T

E
[∣∣X0

t −X
0,π
π(t)

∣∣2] ≤ K
lnn

n
.

Since the generator fπ,ε is Lipschitz, we get the result of Theorem 4.8 of [22]:

sup
0≤t≤T

E
[∣∣Ỹ N,ε,π

t − Y 0,π
π(t)

∣∣2]+ E
[ ∫ T

0

∣∣Z̃N,ε,π
t − Z0,π

π(t)

∣∣2dt] ≤ K

n1−2b−Ka ,

with K = 4(1 + η)L2
f,zM

2
z0 .

Study of the time approximation error e3(N, ε, π)

We denote ηt = Y N,ε
t − Ỹ N,ε,π

t and νt = |ηt|2. As in the proof of Proposition 5.11, there

exists a constant K such that

E[νt] ≤ K

∫ T

t

E[νs]ds+K sup
0≤s≤T

E
[∣∣Y 1,π

π(s)(π(s))− Y 1
s (s)

∣∣2] .
Using Gronwall’s lemma and Proposition 5.12, we get that there exists a constant K

such that

e3(N, ε, π) ≤ K
( 1

n
2α

(2−α)(2+K′′)−2−2α

+
1

n1−K′a+η

)
,

with K ′ = 4L2
f,zM

2
z0 and K ′′ = 4(1 + η)L2

f,zM
2
z0 .

Study of the global error e(N, ε, π)

From Proposition 4.9 and Proposition 4.10 from [22], we get that

e2(N, ε) ≤
K

n2a−4b ,

and

e1(N) ≤ K

n
2bα
1−α

,

with g is α-Hölder.

Now, we are able to gather all these errors.
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Proposition 5.17. We assume that (HFQD), (HBQD), Assumptions 5.3, and 5.1 or

5.2 hold. We assume also that g is α-Hölder. Then, for all η > 0, there exists a constant

K that does not depend on n such that

e(N, ε, π) ≤ K
( 1

n
2α

(2−α)(2+K′′)−2−2α

+
1

n1−K′a+η

)
,

with K ′ = 4L2
f,zMz0 and K ′′ = 4(1 + η)L2

f,zMz0.

5.5 Approximation of the solution of FBSDE (2.1)-(2.2)

In this part, we give an approximation of the solution of FBSDE (2.1)-(2.2) by using the

previous results.We introduce the following scheme for i = 0, . . . , n

Y π
ti

= Y 0,π
ti 1ti<τ + Y 1,π

ti (π(τ))1ti≥τ

Zπ
ti

= Z0,π
ti 1ti≤τ + Z1,π

ti (π(τ))1ti>τ

Uπ
ti

=
(
Y 1,π
ti (ti)− Y 0,π

ti

)
1ti≤τ

Now it is easy to give an error estimate of this approximation scheme:

Theorem 5.1. Under (HF), (HBQ), (HFQD) and (HBQD), there exists a constant

K such that the error estimate of the approximation scheme is upper bounded by

sup
0≤t≤T

E
[∣∣Yt − Y π

π(t)

∣∣2]+ E
[ ∫ T

0

∣∣Zt − Zπ
π(t)

∣∣2dt]+ E
[ ∫ T

0

λt
∣∣Ut − Uπ

π(t)

∣∣2dt]
≤ K

( 1

n
2α

(2−α)(2+K′′)−2−2α

+
1

n1−K′a+η +
1

n

)
.

Proof. Step 1. Error for the variable Y . Fix t ∈ [0, T ]. From Theorem 2.1 and (3.13), we

have

E
[∣∣Yt − Y π

t

∣∣2] = E
[∣∣Y 0

t − Y
0,π
π(t)

∣∣21t<τ]+ E
[∣∣Y 1

t (τ)− Y 1,π
π(t)(π(τ))

∣∣21t≥τ] .
Using (DH), we get

E
[∣∣Yt − Y π

t

∣∣2] ≤ E
[∣∣Y 0

t − Y
0,π
π(t)

∣∣2]+

∫ T

0

E
[∣∣Y 1

t (θ)− Y 1,π
π(t)(π(θ))

∣∣21t≥θγT (θ)
]
dθ

≤ K
(
E
[∣∣Y 0

t − Y
0,π
π(t)

∣∣2]+ sup
θ∈[0,T ]

sup
s∈[θ,T ]

E
[∣∣Y 1

s (θ)− Y 1,π
π(s)(π(θ))

∣∣2]) .
Using Propositions 5.12 and 5.17, and since t is arbitrary chosen in [0, T ], we get

sup
t∈[0,T ]

E
[∣∣Yt − Y π

t

∣∣2] ≤ K
( 1

n
2α

(2−α)(2+K′′)−2−2α

+
1

n1−K′a+η +
1

n

)
,

for some constant K which does not depend on π.
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Step 2. Error estimate for the variable Z. From Theorem 2.1 and (3.13), we have

E
[ ∫ T

0

∣∣Zt − Zπ
t

∣∣2dt] = E
[ ∫ T∧τ

0

∣∣Z0
t − Z

0,π
π(t)

∣∣2dt]+ E
[ ∫ T

T∧τ

∣∣Z1
t (τ)− Z1,π

π(t)(π(τ))
∣∣2dt] .

Using (DH), we get

E
[ ∫ T

0

∣∣Zt − Zπ
t

∣∣2dt] =

∫ T

0

∫ θ

0

E
[∣∣Z0

t − Z
0,π
π(t)

∣∣2γT (θ)
]
dtdθ

+

∫ T

0

∫ T

θ

E
[∣∣Z1

t (θ)− Z1,π
π(t)(π(θ))

∣∣2γT (θ)
]
dtdθ .

≤ K
(
E
[ ∫ T

0

∣∣Z0
t − Z

0,π
π(t)

∣∣2dt]+ sup
θ∈[0,T ]

E
[ ∫ T

θ

∣∣Z1
t (θ)− Z1,π

π(t)(π(θ))
∣∣2]dt) .

From Propositions 5.12 and 5.17, we get

E
[ ∫ T

0

∣∣Zt − Zπ
t

∣∣2dt] ≤ K
( 1

n
2α

(2−α)(2+K′′)−2−2α

+
1

n1−K′a+η +
1

n

)
,

for some constant K which does not depend on π.

Step 3. Error estimate for the variable U . From Theorem 2.1 and (3.13), we have

E
[ ∫ T

0

∣∣Ut − Uπ
t

∣∣2λtdt] ≤ K E
[ ∫ T

0

(
|Y 1
t (t)− Y 1,π

π(t)(π(t))|2 + |Y 0
t − Y

0,π
π(t)|

2
)
λtdt

]
.

Using (HBI), we get

E
[∫ T

0

∣∣Ut − Uπ
t

∣∣2λtdt] ≤ K
(

sup
θ∈[0,T ]

sup
t∈[θ,T ]

E
[∣∣Y 1

t (θ)− Y 1,π
π(t)(π(θ))

∣∣2]+ sup
t∈[0,T ]

E
[∣∣Y 0

t − Y
0,π
π(t)

∣∣2]) .
Combining this last inequality with Propositions 5.12 and 5.17, we get the result.

2
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