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Motivations
The microscopic description of the fission process can be done using a two-step

approach with the Hartree-Fock-Bogoliubov (HFB) formalism and the Time-Dependent
Generator Coordinate Method (TDGCM). First, a Potential Energy Surface (PES) is cal-
culated using the HFB method in a given deformation subspace, then a dynamical prop-
agation of a wave packet is performed using the TDGCM with a Gaussian Overlap Ap-
proximation (GOA) using the previously calculated PES as a set of TDGCM basis states.
Since the HFB method we are using relies on the implicit minimization of the total bind-
ing energy under the action of several deformation constraints, some neighboring HFB
solutions in the deformation subspace can in fact be quite different in the whole deforma-
tion space, and this can lead to the presence of discontinuites in the PES. One possible
way to get rid of some of these discontinuites, in order to improve the description, is to
increase the number of deformation constraints, i.e. use a bigger deformation subspace
for the PES. However, increasing this number implies that the number of constrained
HFB calculations needed to span the deformation subspace in a dense enough way for
the subsequent use of the TDGCMmethod grows exponentially, and so do the numerical
resources needed to produce the corresponding PES.
This study aims at comparing the capabilities of several machine learning methods to re-
duce the numerical cost of the production of a 3-dimensional PES. In the present study,
we do not focus on one specific algorithm. Instead, we compare several very different
methods and discuss their specificities in a given physical context (the description of
nuclear low-energy fission). Our goal is that such a comparative study may emphasize
some of the possible uses of diverse machine learning approaches in nuclear physics.

Goals
Let us consider a complete fission potential-energy surface for three shape coordi-

nates E[MeV ] = f(q20, q30, q40) where q20[b] (elongation), q30[b3/2] (mass asymmetry)
and q40[b

2] (hexadecapolar moment) are the multipole-moments constraints constituting
a database of 389 440 HFB energy values.
The corresponding PES is drawned in 3D according to the collective variable q20 between
0 b and 30 000 b and q30 between 0 b3/2 and 100 000 b3/2 and for the energies below
−1943 MeV.

Figure 1: Potential energy surface fission with constraints q20, q30 and q40.

Including the additional variable q40 would involve roughly 2.106 constrained HFB calcu-
lations, imply a numerical cost ≈ 1.106 cpu.h for a full 3D PES.

Metrics Evaluation
Summary of the result with the non-parametic regression algorithms for both 1%

(3894 data points) and 5% (19 470 data points) of the 389 440 available points.

1%
Method Average RMSE Standard deviation

Linear Regression 6.04 MeV +/- 0.42
Polynomial Regression 1.21 MeV +/- 0.38

LASSO 6.33 MeV +/- 0.43
RIDGE 6.04 MeV +/- 0.42

kNN (k=4) 1.76 MeV +/- 0.25
SVM 1.46 MeV +/- 0.22

DecisionTree (CART) 2.56 MeV +/- 0.21
CART-Bagging (=RF) 1.58 MeV +/- 0.19

CART-Boosting 1.22 MeV +/- 0.18
CART-Stacking 0.99 MeV +/- 0.04
Neural Network 0.77 MeV +/- 0.02

Gaussian Process 0.47 MeV +/- 0.03
5%

Average RMSE Standard deviation
Linear Regression 6.04 MeV +/- 0.34

Polynomial Regression 0.82 MeV +/- 0.02
LASSO 6.33 MeV +/- 0.43
RIDGE 6.04 MeV +/- 0.42

kNN (k=4) 1.05 MeV +/- 0.09
SVM 1.56 MeV +/- 0.06

DecisionTree (CART) 1.42 MeV +/- 0.05
CART-Bagging (=RF) 0.79 MeV +/- 0.06

CART-Boosting 0.67 MeV +/- 0.06
CART-Stacking 0.57 MeV +/- 0.02
Neural Network 0.45 MeV +/- 0.01

Gaussian Process 0.40 MeV +/- 0.04

Evolution of the RMSE as the percentage of training data (from 1% to 5%)

Figure 2: RMSE of the HFB Energy (using cross-validation) as a function of the size of the training
set (in percent of PES Database

Figure 3: Front pareto for each methods w.r.t to precision and training time (left 3894 points - right
19470 points

Gaussian Process and Neural Network

Figure 4: Density comparisons of predicted value vs real value. Left Gaussian Process, right
Neural Network.

Physical usability of such methods

Figure 5: Comparison of the symmetric (q30 = 0) minimum binding energy along q20 with different
interpolations. GP stands for Gaussian Process, NN for Neural Network, and HFB for the original
HFB solutions.

Figure 6: From left to right, PES of the nucleus, prediction of the PES using Neural Network and
prediction of the PES using Gaussian Process.

Conclusion
In this work we build a new way to speed up microscopic evaluation of a Potential

Energy Surface using cutting edge methods in the field of machine learning. We reached
impressive performances a RMSE of∼ 500 keV with only∼ 4000 inputs on amap of more
than 380000 data points.
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