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Normalization techniques

Given n time series {X1, ..., Xn} ∈ RT . For i ∈ {1, ..., n} and
j ∈ {1, ..., T}:

Min-Max Standardization

Global GN(Xj
i ) =

Xj
i −min(X)

max(X)−min(X) GS(Xj
i ) =

Xj
i −mean(X)

std(X)

Instance IN(Xj
i ) =

Xj
i −min(Xi)

max(Xi)−min(Xi)
IS(Xj

i ) =
Xj

i −mean(Xi)

std(Xi)

Table 1: Normalization methods

1. Scaling: mostly used to limit the influence of outlier
points in the time series.

2. Normalization: necessary step to train neural networks.
Standardization makes data distribution closer to normal
and normalization rescales it to [0, 1].

3. Instance vs Global: instance (or z-) normalization re-
moves offset and variance information from time series.

(a) Shape is discriminative

(b) Scale is discriminative
Figure 1: Toy examples

• In Figure 1a: z-normalization is necessary

• In Figure 1b: z-normalization would be ill-advised

Introduction

It is well known that data normalization is a fundamental
pre-processing step for learning using Convolutional Neural
Networks (CNN). Multiple normalization techniques have
been proposed and finding an appropriate one is not an easy
task.

Motivated by applications in the energy consumption field,
we study Time Series Classification (TSC) with deep learning
techniques. We adapt DenseNets to a new convolutional
architecture for TSC.

We conduct an experimental study the impact of different
data normalization techniques on this architecture. We pro-
pose a solution to mitigate different pre-processing methods
and show its applicability across various fields.

DenseNet and normalization

Figure 2: DenseNet: each block is made of successive convolutions and skip connections ended by a bottleneck convolution

Layers Input shape Output shape Filter shape
Input Time series of length l

Conv (1) l × 1 l × 64 1× 7
Conv (2) l × 64 l × 64 64× 5
Conv (3) l × 128 l × 64 128× 3
Conv (4) l × 192 l × 64 192× 3

Pooling (1) l × 64 l/2× 64 2

Table 2: Dense block ; 3 consecutive dense blocks are used in
the final architecture

FeatNet One entry corresponds to the instance-normalized
time series, which is passed into a convolutional architecture.
At the fully-connected level, the output of the convolutional
blocks is concatenated with the other entry, containing the scale
information from the time series

EnsNormNet Different entries corresponding to the input
time series, normalized and scaled differently for each entry.
Each entry is passed into convolutional blocks with no weight
sharing. The outputs are then concatenated into a fully con-
nected layer that gives the final prediction.

(a) FeatNet

(b) EnsNormNet
Figure 3: Proposed architectures

Results
Procedure

• Global Standardization (GS)

• Global min-maxNormalization (GN)

• Instance Standardization (IS)

• Instance min-max Normalization (IN)

• Box-Cox Transformation + Global Standardization (BC-GS)

• Box-Cox Transformation + Instance Standardization (BC-
IS)

• Instance Standardization + FeatNet (IS-Feat)

• Instance Standardization - Global Standardization + En-
sNormNet (IS-GS-ENN)

Using K-fold validation and keeping houses used for training sep-
arate from houses used for testing, we compare the different nor-
malization techniques. We ran the experiments 10 times for each
classifier with K = 5 and compare the macro F1-score to take into
account class imbalance.

Results

The best performance is achieved by the ensemble
of transformations (EnsNormNet). One can
see that instance standardization has a bad im-
pact on classification performance, especially for
discriminating devices similar in shape such as
Toaster/Kettle/Microwave or Computer/TV. At
the same time, GS is not optimal for separating
Dishwashers from Washing Machines for instance.
For this application, we highlight that IS-GS-
ENN gets the best of both worlds.

As assumed in [1], z-normalization is not necessarly
the best choice for time series classification using
convolutional networks. Mixing different transfor-
mation of time series in a Convolutional Network
offer a solution to balance shapes and levels in
time series and leads to more robust classifiers.

GS GN IS IN BC-GS BC-IS IS-Feat IS-GS-ENN
78,37 (0,63) 77,37 (0,58) 75,69 (0,89) 75,48 (0,76) 77,99 (0,43) 75,83 (0,73) 76,11 (0,97) 83,39 (0,54)

Table 3: F1 score (%) for different architectures with standard deviation over 10 runs
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Electrical Appliance Recognition

Figure 4: Appliance signatures (x-axis: minutes ; y-axis: W )

REFIT [2]: dataset of smart meter measurements of house-
hold electricity consumption. Our goal is to automatically
recognize home appliances based on their electric consump-
tion profiles. Namely we transform create a time series clas-
sification problem with the following characteristics:

• Extraction of single signatures from 6 devices and get
an appliance identification task

• Signatures are padded to length of 540, corresponding
to 90 minutes (10s sampling)

• Out of 20 houses, we extract 28, 890 signatures


