DenseNetsfgr Time Series Classification:
towards automation of time series pre-processing with CNNs
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Introduction Normalization techniques
It is well known that data normalization is a fundamental Given n time series {X1,..., X,,} € R". For i € {1,...,n} and — S e S
pre-processing step for learning using Convolutional Neural j el ... T}: e 'ﬁ"’ s
Networks (CNN). Multiple normalization techniques have e tuﬁf“*._f'xu 050{ =" ,
been proposed and finding an appropriate one is not an easy Min-Max Standardization 0.25 w/\\m 0.25 -

N X —min(X) i\ X! —mean(X) 0.00 - 0.00 -
task. Global GN(X;? ) = maz(X)—min(X) GS(XiJ ) = std(X) 00 05 10 15 20 00 05 10 15 20

Instance | IN(X/) = —2u—minX) | rg(x7) — Xi—mean(Xy) e

Motivated by applications in the energy Consumption ﬁeld, ( ’L) max(X;)—min(X;) ( z) std(X;) Elgi)l Shape 1S dlSCl“lHllIlafCl\r;eHSEE

we study Time Series Classification (TSC) with deep learning

Table 1: Normalization methods 0.8 1 0.8

techniques. We adapt DenseNets to a new convolutional 0.6 - 0.6 -
architecture for TSC. . o . . 0.4 - ~ 0.4 -
1. Scaling: mostly used to limit the influence of outlier 02 - 02 -

points in the time series. 0.0 - 0.0 -

We conduct an experimental study the impact of different
data normalization techniques on this architecture. We pro- 2. Normalization: necessary step to train neural networks.
pose a solution to mitigate different pre-processing methods Standardization makes data distribution closer to normal
and show its applicability across various fields. and normalization rescales it to [0, 1].

0.0 0.5 10 15 20 0.0 0.5 10 15 20
(b) Scale is discriminative

Figure 1: Toy examples

3. Instance vs Global: instance (or z-) normalization re-

, , , , , e In Figure la: z-normalization is necessary
moves offset and variance information from time series.

e In Figure 1b: z-normalization would be ill-advised

DenseNet and normalization
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Figure 2: DenseNet: each block is made of successive convolutions and skip connections ended by a bottleneck convolution
: : Densze
FeatNet One entry corresponds to the instance-normalized I3(X) I—‘w
Layers Input shape | Output shape | Filter shape time series, which is passed into a convolutional architecture. ‘ Concat I__,‘ Class
Input Time series of length ! At the fully-connected level, the output of the convolutional .| T
gom’ Elg ll x 1 g x 64 1 X7 blocks is concatenated with the other entry, containing the scale o
onv (2 X 64 X 64 64 X 5 : : : :
information from the time series
Conv (3) [ x 128 | x 64 128 x 3 (a) FeatNet
Conv (4 [ x 192 [ x 64 192 x 3 , , , , D
Pooling( ()1) I % 64 1/2 x 64 9 EnsNormNet Different entries corresponding to the input I5(X;) I—"ﬁl_;

time series, normalized and scaled differently for each entry.
Table 2: Dense block ; 3 consecutive dense blocks are used in ~ FEach entry is passed into convolutional blocks with no weight
the final architecture sharing. The outputs are then concatenated into a fully con-
nected layer that gives the final prediction.
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Figure 3: Proposed architectures

Electrical Appliance Recognition Results
Procedure Results

e Global Standardization (GS) The best performance is achieved by the ensemble
e Global min-maxNormalization (GN) of transformations (EnsNormNet). One can
L see that instance standardization has a bad im-

e Instance Standardization (IS) . . .
pact on classification performance, especially for
e Instance min-max Normalization (IN) discriminating devices similar in shape such as
e Box-Cox Transformation + Global Standardization (BC-GS) Toaster/Kettle/Microwave or Computer/TV. At

the same time, GS is not optimal for separating

TN R ™ e Box-Cox Transformation + Instance Standardization (BC- Dishwashers from Washing Machines for instance.
IS) For this application, we highlight that IS-GS-
e Instance Standardization + FeatNet (IS-Feat) ENN gets the best of both worlds.
e Instance Standardization - Global Standardization + En-
* 0 P lesting vachin sNormNet (IS-GS-ENN) As assumed in |1, z-normalization is not necessarly
the best choice for time series classification using
Using K-fold validation and keeping houses used for training sep- convolutional networks. Mixing different transtor-
arate from houses used for testing, we compare the different nor- mation of time series in a Convolutional Network
R R malization techniques. We ran the experiments 10 times for each offer a solution to balance shapes and levels in
classifier with K = 5 and compare the macro F1l-score to take into time series and leads to more robust classifiers.

Figure 4: Appliance signatures (z-axis: minutes ; y-axis: W) account class imbalance

REFIT |2]: dataset of smart meter measurements of house-

hold electricity consumption. Our goal is to automatically GS GN IS IN BC-GS BC-IS IS-Feat IS-GS-ENN
recognize home appliances based on their electric consump- 78,37 (0,63) | 77,37 (0,58) | 75,69 (0,89) | 75,48 (0,76) | 77,99 (0,43) | 75,83 (0,73) | 76,11 (0,97) | 83,39 (0,54)

tion profiles. Namely we transform create a time series clas-
sification problem with the following characteristics: Table 3: F1 score (%) for different architectures with standard deviation over 10 runs

e LEixtraction of single signatures from 6 devices and get
an appliance identification task

e Signatures are padded to length of 540, corresponding
to 90 minutes (10s sampling)

References

|1] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller. Deep learning for time series classifica-
tion: a review. 09 2018.

|2] David Murray and Lina Stankovic. REFIT: Electrical load measurements. University of strathclyde. 2015,

e Out of 20 houses, we extract 28, 890 signatures




