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Introduction

On-board satellite imagers provide key geophysical param-
eters (temperature, chlorophyll-a, ...) at a global and daily
scale. These observations are sparse mainly due to missing
data caused by cloud coverage and orbital characteristics
(e.g. Fig 1)

Figure 1: Chlorophyll-a concentration provided by GlobColour on 02
August 2008.

Objective

The objective of this work is to propose two algorithms
to complete missing satellite data (inpainting) and eval-
uate them through a twin experiment.

Data

31452 data were selected from Globcolour daily images
from 1997 to 2014:
•Regions selected in west Med Sea (64 × 64 pixels
images) between 36-40oN and 1-10oE (e.g. Fig. 2)

• Images with more than 90 % of valid pixels were kept
•Artificial cloud masks were randomly added. (e.g.
Fig. 3)

Figure 2: Areas in West Mediterranean Sea selected for the study

Original Cloud Masks

Figure 3: Example of generated masks

Description of the algorithms

Krigging

The Krigging method aims at providing a best estimation
of the chlorophylle-a’s field at unknown points using spa-
tial correlation. Here we used ordinary Krigging assuming
a constant unknown mean and no trend in our data. The
method is a linear combination of observations weighted
by correlations between the observations and the predic-
tion point. The correlation is characterized by a semi-
variogram, which quantifies covariance between points for
a specific distance.

Context Encoder

The Deep-Learning method is based on a neural Context
Encoder. The network is composed of an encoder and a
decoder both with 4 convolution layers.
The network was trained using 10620 images for 50
epochs.The loss function is evaluated using a L2 norm on
an expanded mask with weights (0.1 in the center, 1 on
the edges) over the missing values in order to emphasize
the consistency of the prediction with the context.

Output of the proposed algorithm

Input True Krigging Context Encoder

Figure 4: Examples of reconstructions using Krigging and Context Encoder

Performances

The performances are measured using the Root-Mean
Square Error (RMSE), the coefficient of determination (R2)
and the Spatial Variance Ratio (SVR, calculated for each
image) between the prediction and the real image. The
SVR is used as an indicator for the preservation of the
chlorophyll-a spatial distribution. They are presented in
Fig. 5.

RMSE R2 SVR (median)
Context Encoder 3.67 · 10−3 0.81 0.78

Krigging 2.79 · 10−3 0.86 0.65
Figure 5: Comparative table of Context Encoder and Krigging perfor-
mances over the 100 images of the validation dataset

The Boxplot (e.g. Fig. 6) reveals that the reconstruction
achieved by the Context Encoder has the best retrieval of
the spatial dynamic of the chlorophyll-a.

Figure 6: Boxplot of spatial variance ratio for Context Encoder and
Krigging

Conclusion

This work compared two inpainting methods: an inter-
polation technique, Krigging, and a neural network, the
Context Encoder. The results suggest that the Context
Encoder is as good as an statistical optimal interpola-
tion to reconstruct chlorophyll-a structures under clouds.
When reconstructing smaller structures, the Context En-
coder seems slightly better.
This work will continued focusing on :
•Adding temporal inputs to improve the reconstruction
for all methods

•Testing a Generative Adversarial Networks (GAN)
architecture
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