
ADirectMethod toAssessFloating-PointAccuracy
Nestor Demeure1,2, Cédric Chevalier2, Christophe Denis3, Pierre Dossantos-Uzarralde2

1 Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-94235, Cachan, France 2 CEA, DAM, DIF, F-91297 Arpajon, France
3 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Motivations
Floating-point numbers are an approximation of real numbers: only a finite set of

numbers is represented. As a consequence, when doing a computation with floating-
point arithmetic, each operation is approximated leading to small numerical errors at
each step:

(0.1 + 0.2) + 0.3 = (0.3 + error1) + 0.3

(0.1 + 0.2) + 0.3 = 0.6 + error1 + error2

(0.1 + 0.2) + 0.3 = 0.60000000000000009

6=
0.1 + (0.2 + 0.3) = 0.59999999999999998

While their impact tend to be small when the number of operations stays small, it can
easily become significant on large applications that do millions of arithmetic operations
per second.

Thus, there is need for a method to measure the impact of floating-point arithmetic
on computations and, ideally, pinpoint its origins.

Goals
Fine-grained error measuring
Access the accuracy anywhere in an application,
able to signal noticeable numerical errors in real time.

Localization of error sources
Traces the numerical error back to sections of interest in the application.

Suitable for high performance computing
Limited overhead compared to the state of the art,
compatible with parallelism.

Measuring numerical error: a new method
Numbers are replaced with (value, error) couples such that value is the output one

would have with classical floating-point arithmetic and error verifies:

value+ error ≈ analytical value

To do so, the numerical error produced locally is computed at each operation (using
either an Error Free Transform operation when it is available or higher precision arith-
metic) while the errors comings from the inputs are propagated.

The simplest example is the addition which is defined as :

(x, errorx) + (y, errory) = (x+ y, errorx + errory + error+)

Using this representation we have access to the result (value) but also its numerical
error (error) anywhere in an application and thus can quantify the number of significant
digits of any value using the following formula :

digits(value, error) =
⌊
− log10

∣∣∣error
value

∣∣∣⌋

Numerical analysis of an integration scheme
The accuracy of our method is illustrated on the integration of a function using the

rectangle rule. As the number of steps increase, the discretization error converges to-
ward zero leaving us with the numerical error due to the sum of the areas.

Number of rectangles

1,00E-07

1,00E-05

1,00E-03

1,00E-01

1 10 100 1000 10000

integration error estimated numerical error

Figure 1: Integrating cos(x) between 0 and π/2 using the rectangle rule.

The Shaman library
Our method is implemented in the Shaman library. It can be used to instrument

mixed precision C++ source code and is compatible with the Eigen linear algebra library,
OpenMP and MPI. Furthermore, it can be hooked to a debugger such as gdb in order to
trigger a breakpoint on noticeable operations such as unstable branches.

Tracing numerical error
The representation can be refined in order to trace the main sources of error. To do

so, error is expanded into [errortag] such that :

value+
∑
tag

errortag ≈ analytical value

Each tag is a unique identifier associated with a section of interest in the instrumented
application. With this refinement, the formula to compute an addition in the section s
becomes:

(x, [errorx,tag]) + (y, [errory,tag]) = (x+ y, [errorx,tag + errory,tag + δs,tag ∗ error+])

The relative impact of a section s to the numerical error of a result (value, [errortag])
can now easily be computed as follows :

errors∑
tag errortag

Sources of error in a numerical solver
The sources of numerical error in the conjugate gradient algorithm are traced for

matrices of increasing condition number.

Matrix conditioning

Fr
ac

tio
n 

of
 to

ta
l e

rr
or

 (i
n 

%
)

0%

25%

50%

75%

100%

10e0 10e05 10e10 10e15 10e20 10e25

matrix vector product dot product 2 dot product 1 loop body initialisation

Figure 2: Distribution of the numerical error in the output of the conjugate gradient algorithm.

Replacing the matrix vector product with a numerically stable implementation, as it
quickly dominates the numerical error, leads to a three-fold reduction of the residual on
badly conditioned matrices.

Overhead of the instrumentation

x1

x1

x1

x1

x6

x3

x3

x13

x11

x26

x4

x55

x42

x28

x6

x205

x81

x73

x44

x170

Overhead compared to double precision

be
nc

hm
ar

k

Lulesh

n-body

Spectral 
norm

Mandelbro
t Set

x x50 x100 x150 x200

Double precision Shaman Boost Interval Verrou Shaman tagged error

Figure 3: Overhead of the Shaman library compared to the state of the art.

Perspectives
Automatic instrumentation
Automatic refactoring (Clang),
Instrumentation at compile time (Clang / LLVM),
Instrumentation of a binary (Valgrind).

Targeted precision improvement
Limit the precision of an application where it does not matter to the final result.

Error modeling
Build an interpretable model of the propagation of error in an application.


