
Formal Verification & Analysis of Graph Databases
Stefania Dumbrava
ENSIIE & Methods Team, Samovar Laboratory (Institut Polytechnique de Paris)

stefania.dumbrava@ensiie.fr

Graph Models & Database Management Systems
Graphs are semantically rich data models able to inherently capture the structure of complex objects and their interconnecting relationships. Due to their
high expressiveness, graphs are used in numerous domains, including Knowledge Representation and the Semantic Web, Linked Open Data, geolocation
data, as well as in life science repositories. Graph models cover the spectrum from simple, edge-labeled to property enriched, on both nodes and edges, and
lie at the foundation of modern graph database systems. These systems leverage native graph storage and index-free adjacency to replace the costly table
joins from the relational setting with efficient graph traversals. We overview recent work on computing compact abstractions of graph datasets and on using
these to approximate the result of intractable path query fragments ([1-4]). We also highlight the implementation and formal verification of a prototype
graph database engine capable of evaluating regular queries. To this end, we rely on a fragment of the Datalog logic programming language as a unifying
formalism for the multitude of graph query dialects that currently underpin commercial implementations and that are yet to be standardized ([5-6]).

Graph Summarization & Approximate Query Processing
GRASP Summaries. The compact GRASP representation of a property
graph G is computed as follows. A grouping phase partitions it into sub-
groupings, based on the connectivity of its most frequent edge labels. An
evaluation phase collapses the vertices and inner-edges of each maximally
label-connected subgrouping. Finally, the source/target merge phase further
collapses the common start/end nodes of same labeled edges.

Results. Experimental studies on datasets varying in density and label
heterogeneity convey high compression ratios (CR) (≈ 85% for graphs
over 200K nodes) and low summary computing times (SCT), especially for
sparser graphs, which also exhibit low sensitivity to size variations.

Approximate Graph Querying (AQP). We approximate the evaluation
of graph queries Q over G with that of their translation over the GRASP
summarization of G. We target queries that count pair-wise label-constrained
reachability, e.g., SELECT COUNT(*) MATCH Qi, as shown in the below table.
These are frequent and intractable (their exact evaluation is #P-complete),
hence a good case-study for designing efficient approximation heuristics.

Results. Comparing our approach APP [4] with the state-of-the-art Sum-
RDF AQP engine, we record an average relative estimation error of 0.15%.
vs. 2.5% and an average query runtime of only 27.55 ms vs. 427.53 ms.

Formally Verified Graph Querying
Graph queries used in commercial implementations are subsumed by a
logic programming language called Datalog, which extends the expressivity
of conjuctive queries with recursion. It consists of a set of facts and of
if-then-else rules, allowing to infer new facts from existing ones.

A Datalog program Π is evaluated by instantiating the heads of each rule
with substitutions ν that uniformly match its body atoms against a set of
facts I. The minimal model MM(Π) corresponds to the fixed-point iteration
of TΠ(I) = I ∪ {ν(head) | head← body ∈ P ∧ ν(body) ⊆ I}.

Π =

 R1(a, b).
R2(b).
R2(X)← R1(X,Y ), R2(Y ).

TΠ ↑1 = TΠ(∅) = {R1(a, b), R2(b)}

TΠ ↑2 = TΠ(TΠ ↑1) = {R1(a, b), R2(b), R2(a))}

...

TΠ ↑ω = TΠ(TΠ ↑ω−1
) = lfp(TΠ) = MM(Π)

Graph Queries in Datalog. A graph G can be seen as database instance
by considering edge labels to be binary predicates. Datalog rules can then
capture reachability through complex paths, as computed by pfriends
below. These can represent unions, conjunctions, compositions, and inverses
of paths with labels belonging to a regular language. Querying for pair-wise
label constrained reachability thus amounts to evaluating the result V [G]
of running a Datalog program Π over the instance G.

In practice, however, graph data is constantly evolving and prone to updates
∆, i.e., to edge additions and removals. To avoid the costly recomputation
of query results when a graph instance G is thus modified into G :+: ∆,
one can instead maintain previously computed results. This amounts to
incrementally updating the existing result, in order to produce the same
answer as a full recomputation (see above diagram). The correctness of
the algorithm amounts to proving that: If V [G] |= ΠG, then the engine
outputs an incremental update V ∆, such that V [G] :+: V ∆ |= ΠG:+:∆. We
have used the Coq proof assistant to model the specification of a graph
database that builds on the edge-labeled model and have implemented and
formally proved an inference engine capable of both incremental evaluation
& maintenance of graph queries belonging to the regular Datalog fragment.

Results. We have fully specified & verified our engine in less than 2K loc
of Coq code [6]. We also extracted a correct-by-construction OCaml engine,
which we ran on realistic graph datasets that we synthetically generated.

References
[1] A. Bonifati, S. Dumbrava. 2018. Graph Queries: From Theory to Practice. In Sigmod Record 47(4), p. 5–12.
[2] S. Dumbrava, A. Bonifati, A. Nazabal, R. Vuillemont. 2019. Approximate Evaluation of Complex Queries on Property Graphs. In Proc. of the 13th International Conference on
Scalable Uncertainty Management (SUM), p. 250-265.
[3] A.Bonifati, S.Dumbrava, H. Kondylakis. 2021. Graph Summarization. Encyclopedia of Big Data Technologies.
[4] GRASP System. https://github.com/grasp-algorithm.
[5] A. Bonifati, S. Dumbrava, E. Gallego. 2018. Certified Graph View Maintenance with Regular Datalog. Theory and Practice of Logic Programming Journal, 18(3-4):372–389.
[6] VerdiLog System. https://github.com/VerDILog.


